Logo

dev-resources.site

for different kinds of informations.

Multi-Timeframe Trend Following Strategy with ATR-Based Take Profit and Stop Loss

Published at
1/3/2025
Categories
strategy
trading
cryptocurrency
multitimeframe
Author
fmzquant
Author
8 person written this
fmzquant
open
Multi-Timeframe Trend Following Strategy with ATR-Based Take Profit and Stop Loss

Image description

Overview
This is a trend-following trading strategy that combines UT Bot with a 50-period exponential moving average (EMA). The strategy is mainly short-term trading in a 1-minute time period, while using a 5-minute time period trend line as a direction filter. The strategy uses the ATR indicator to dynamically calculate the stop loss position and sets a double take profit target to optimize returns.

Strategy Principle
The core logic of the strategy is based on the following key components:

  1. Using UT Bot to calculate dynamic support and resistance levels
  2. Use the 50-period EMA with a 5-minute period to determine the overall trend direction
  3. Combine 21-period EMA and UT Bot signals to determine specific entry points
  4. Set dynamic trailing stop loss by ATR multiple
  5. Set two profit targets of 0.5% and 1%, and close 50% of the position respectively

When the price breaks through the support/resistance level calculated by UT Bot and the 21-period EMA crosses UT Bot, a trading signal is triggered if the price is in the right direction of the 5-minute 50-period EMA.

Strategy Advantages

  1. The combination of multiple time periods improves transaction reliability
  2. Dynamic ATR stop loss can be adjusted adaptively according to market fluctuations
  3. Double profit targets balance returns and win rates
  4. Using Heikin Ashi candlestick charts can filter out some false breakouts
  5. Support flexible trading direction selection (only long, only short or two-way trading)

Strategy Risks

  1. Short-term transactions may face higher spreads and commission costs
  2. Frequent false signals may occur in sideways markets
  3. Multiple restrictions may result in missing out on potential trading opportunities
  4. The setting of ATR parameters needs to be optimized for different markets

Strategy Optimization Direction

  1. You can add volume indicators as auxiliary confirmation
  2. Consider introducing more market sentiment indicators
  3. Develop adaptive parameters for different market volatility characteristics
  4. Added filtering for trading time periods
  5. Developing a smarter warehouse management system

Summary
This strategy builds a complete trading system by combining multiple technical indicators and time periods. It not only includes clear entry and exit conditions, but also provides a complete risk management mechanism. Although in actual application, parameter optimization still needs to be carried out according to specific market conditions, the overall framework has good practicality and scalability.

Strategy source code

/*backtest
start: 2019-12-23 08:00:00
end: 2024-12-18 08:00:00
period: 1d
basePeriod: 1d
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5
//Created by Nasser mahmoodsani' all rights reserved
// E-mail : [email protected]

strategy("UT Bot Strategy with T/P and S/L and Trend EMA", overlay=true)

// Inputs
along = input(1, title='Key Value (Sensitivity - Long)', group="LONG")
clong = input(10, title='ATR Period (Long)', group="LONG")
h = input(true, title='Signals from Heikin Ashi Candles')
ashort = input(7, title='Key Value (Sensitivity - Short)', group="SHORT")
cshort = input(2, title='ATR Period (Short)', group="SHORT")
tradeType = input.string("Both", title="Trade Type", options=["Buy Only", "Sell Only", "Both"])
tp1_percent = input.float(0.5, title="TP1 Percentage", step=0.1, group="TP Settings") // TP1 % input
tp2_percent = input.float(1.0, title="TP2 Percentage", step=0.1, group="TP Settings") // TP2 % input
sl_percent = input.float(1.0, title="Stop Loss Percentage", step=0.1, group="TP Settings") // SL % input
sl_in_percent = input(true, title="Use Stop Loss in Percentage", group="TP Settings")
tp1_qty = input.float(0.5, title="Take Profit 1 Quantity (as % of position size)", minval=0.0, maxval=1.0, step=0.1)
tp2_qty = input.float(0.5, title="Take Profit 2 Quantity (as % of position size)", minval=0.0, maxval=1.0, step=0.1)

// Check that total quantities for TPs do not exceed 100%
if tp1_qty + tp2_qty > 1
    runtime.error("The sum of Take Profit quantities must not exceed 100%.")

// Calculate 50 EMA from 5-Minute Timeframe
trendEmaPeriod = 50
trendEma_5min = request.security(syminfo.tickerid, "5", ta.ema(close, trendEmaPeriod))
plot(trendEma_5min, title="Trend EMA (5-Min)", color=color.blue, linewidth=2)

// Calculations 
xATRlong = ta.atr(clong)
xATRshort = ta.atr(cshort)
nLosslong = along * xATRlong
nLossshort = ashort * xATRshort

src = h ? request.security(ticker.heikinashi(syminfo.tickerid), timeframe.period, close) : close

// LONG
var float xATRTrailingStoplong = na
var float stopLossLong = na
var float takeProfit1 = na
var float takeProfit2 = na

iff_1long = src > nz(xATRTrailingStoplong[1], 0) ? src - nLosslong : src + nLosslong
iff_2long = src < nz(xATRTrailingStoplong[1], 0) and src[1] < nz(xATRTrailingStoplong[1], 0) ? math.min(nz(xATRTrailingStoplong[1]), src + nLosslong) : iff_1long
xATRTrailingStoplong := src > nz(xATRTrailingStoplong[1], 0) and src[1] > nz(xATRTrailingStoplong[1], 0) ? math.max(nz(xATRTrailingStoplong[1]), src - nLosslong) : iff_2long

buy = src > xATRTrailingStoplong and ta.crossover(ta.ema(src, 21), xATRTrailingStoplong) and close > trendEma_5min

if buy and (tradeType == "Buy Only" or tradeType == "Both")
    takeProfit1 := close * (1 + tp1_percent / 100)
    takeProfit2 := close * (1 + tp2_percent / 100)

    // Calculate stop loss based on percentage or ATR
    if sl_in_percent
        stopLossLong := close * (1 - sl_percent / 100)
    else
        stopLossLong := close - nLosslong

    strategy.entry("Long", strategy.long)
    strategy.exit("Take Profit 1", from_entry="Long", limit=takeProfit1, qty=strategy.position_size * tp1_qty)
    strategy.exit("Take Profit 2", from_entry="Long", limit=takeProfit2, qty=strategy.position_size * tp2_qty)
    strategy.exit("Stop Loss", from_entry="Long", stop=stopLossLong, qty=strategy.position_size)

    // // Create Position Projectile for Long
    // var line tpLineLong1 = na
    // var line tpLineLong2 = na
    // var line slLineLong = na
    // var label entryLabelLong = na

    // // Update projectile on entry
    // line.delete(tpLineLong1)
    // line.delete(tpLineLong2)
    // line.delete(slLineLong)
    // label.delete(entryLabelLong)

    // tpLineLong1 := line.new(x1=bar_index, y1=takeProfit1, x2=bar_index + 1, y2=takeProfit1, color=color.green, width=2, style=line.style_solid)
    // tpLineLong2 := line.new(x1=bar_index, y1=takeProfit2, x2=bar_index + 1, y2=takeProfit2, color=color.green, width=2, style=line.style_dashed)
    // slLineLong := line.new(x1=bar_index, y1=stopLossLong, x2=bar_index + 1, y2=stopLossLong, color=color.red, width=2, style=line.style_solid)

// SHORT
var float xATRTrailingStopshort = na
var float stopLossShort = na
var float takeProfit1Short = na
var float takeProfit2Short = na

iff_1short = src > nz(xATRTrailingStopshort[1], 0) ? src - nLossshort : src + nLossshort
iff_2short = src < nz(xATRTrailingStopshort[1], 0) and src[1] < nz(xATRTrailingStopshort[1], 0) ? math.min(nz(xATRTrailingStopshort[1]), src + nLossshort) : iff_1short
xATRTrailingStopshort := src > nz(xATRTrailingStopshort[1], 0) and src[1] > nz(xATRTrailingStopshort[1], 0) ? math.max(nz(xATRTrailingStopshort[1]), src - nLossshort) : iff_2short

sell = src < xATRTrailingStopshort and ta.crossover(xATRTrailingStopshort, ta.ema(src, 21)) and close < trendEma_5min

if sell and (tradeType == "Sell Only" or tradeType == "Both")
    takeProfit1Short := close * (1 - tp1_percent / 100)
    takeProfit2Short := close * (1 - tp2_percent / 100)

    // Calculate stop loss based on percentage or ATR
    if sl_in_percent
        stopLossShort := close * (1 + sl_percent / 100)
    else
        stopLossShort := close + nLossshort

    strategy.entry("Short", strategy.short)
    strategy.exit("Take Profit 1 Short", from_entry="Short", limit=takeProfit1Short, qty=strategy.position_size * tp1_qty)
    strategy.exit("Take Profit 2 Short", from_entry="Short", limit=takeProfit2Short, qty=strategy.position_size * tp2_qty)
    strategy.exit("Stop Loss Short", from_entry="Short", stop=stopLossShort, qty=strategy.position_size)

    // Create Position Projectile for Short
    // var line tpLineShort1 = na
    // var line tpLineShort2 = na
    // var line slLineShort = na
    // var label entryLabelShort = na

    // // Update projectile on entry
    // line.delete(tpLineShort1)
    // line.delete(tpLineShort2)
    // line.delete(slLineShort)
    // label.delete(entryLabelShort)

    // tpLineShort1 := line.new(x1=bar_index, y1=takeProfit1Short, x2=bar_index + 1, y2=takeProfit1Short, color=color.green, width=2, style=line.style_solid)
    // tpLineShort2 := line.new(x1=bar_index, y1=takeProfit2Short, x2=bar_index + 1, y2=takeProfit2Short, color=color.green, width=2, style=line.style_dashed)
    // slLineShort := line.new(x1=bar_index, y1=stopLossShort, x2=bar_index + 1, y2=stopLossShort, color=color.red, width=2, style=line.style_solid)

// Updating Stop Loss after hitting Take Profit 1
if buy and close >= takeProfit1
    strategy.exit("Adjusted Stop Loss", from_entry="Long", stop=close)

// Updating Stop Loss after hitting Take Profit 1 for Short
if sell and close <= takeProfit1Short
    strategy.exit("Adjusted Stop Loss Short", from_entry="Short", stop=close)
Enter fullscreen mode Exit fullscreen mode

Strategy parameters

Image description

The original address: https://www.fmz.com/strategy/475592

trading Article's
30 articles in total
Favicon
EMA-MACD Composite Strategy for Trend Scalping
Favicon
Dynamic Timing and Position Management Strategy Based on Volatility
Favicon
Multi-Market Adaptive Multi-Indicator Trend Following Strategy
Favicon
Multi-EMA Trend Following Strategy with SMMA Confirmation
Favicon
Multi-Indicator Trend Following Strategy with Bollinger Bands and ATR Dynamic Stop Loss
Favicon
Dynamic Pivot Points with Crossup Optimization System
Favicon
Multi-Timeframe Trend Dynamic ATR Tracking Strategy
Favicon
Multi-dimensional Gold Friday Anomaly Strategy Analysis System
Favicon
Mean Reversion Bollinger Band Dollar-Cost Averaging Investment Strategy
Favicon
Dynamic ATR Trend Following Strategy Based on Support Level Breakthrough
Favicon
Price Pattern Based Double Bottom and Top Automated Trading Strategy
Favicon
Multi-Indicator Adaptive Trading Strategy Based on RSI, MACD and Volume
Favicon
Multi-Moving Average Trend Following Strategy - Long-term Investment Signal System Based on EMA and SMA Indicators
Favicon
Dual EMA Crossover Strategy with Smart Risk-Reward Control
Favicon
Multi-Period EMA Crossover with RSI Momentum and ATR Volatility Based Trend Following Strategy
Favicon
Dual EMA Stochastic Trend Following Trading Strategy
Favicon
Multi-Wave Trend Crossing Risk Management Quantitative Strategy
Favicon
Dynamic EMA Trend Crossover Entry Quantitative Strategy
Favicon
Enhanced Mean Reversion Strategy with MACD-ATR Implementation
Favicon
Bollinger Bands Momentum Breakout Adaptive Trend Following Strategy
Favicon
Multi-Indicator Synergistic Trend Following Strategy with Dynamic Stop-Loss System
Favicon
Adaptive Range Trading System Based on Dual RSI Indicators
Favicon
Advanced Five-Day Cross-Analysis Strategy Based on RSI and MACD Integration
Favicon
Advanced Quantitative Trend Capture Strategy with Dynamic Range Filter
Favicon
Multi-Technical Indicator Trend Following Strategy with RSI Momentum Filter
Favicon
Advanced Trend Following Strategy with Adaptive Trailing Stop
Favicon
Multi-Timeframe Trend Following Strategy with ATR-Based Take Profit and Stop Loss
Favicon
Triple Supertrend and Bollinger Bands Multi-Indicator Trend Following Strategy
Favicon
Dual Moving Average Trend Following Strategy with Risk Management
Favicon
Quantitative Long-Short Switching Strategy Based on G-Channel and EMA

Featured ones: