dev-resources.site
for different kinds of informations.
Common Data Loss Scenarios & Solutions in Prisma Schema Changes
Common Data Loss Scenarios & Solutions in Prisma Schema Changes
When evolving a database schema using Prisma, care must be taken to ensure data integrity and avoid loss. Below, we explore common data loss scenarios and provide step-by-step solutions to address them effectively.
1. Enum to String Conversion
Issue:
Converting an enum column to a string type can result in data inconsistencies.
Example:
- Before:
payedBy Payment_By @default(NONE)
- After:
payedBy String?
Solution:
-
Add a new column:
ALTER TABLE "Orders" ADD COLUMN "payedBy_new" TEXT;
-
Copy data:
UPDATE "Orders" SET "payedBy_new" = "payedBy"::text;
-
Drop old column:
ALTER TABLE "Orders" DROP COLUMN "payedBy";
-
Rename the new column:
ALTER TABLE "Orders" RENAME COLUMN "payedBy_new" TO "payedBy";
2. Changing Column Type (e.g., Int to Decimal)
Issue:
Directly altering a column type can cause data loss.
Example:
- Before:
amount Int
- After:
amount Decimal
Solution:
-
Add a new column:
ALTER TABLE "TableName" ADD COLUMN "amount_new" DECIMAL;
-
Copy data:
UPDATE "TableName" SET "amount_new" = "amount"::DECIMAL;
-
Drop old column:
ALTER TABLE "TableName" DROP COLUMN "amount";
-
Rename the new column:
ALTER TABLE "TableName" RENAME COLUMN "amount_new" TO "amount";
3. Making a Nullable Column Non-Nullable
Issue:
Enforcing a non-null constraint without handling existing NULL
values can break queries.
Example:
- Before:
email String?
- After:
email String
Solution:
-
Populate
NULL
values with placeholders:
UPDATE "TableName" SET "email" = '[email protected]' WHERE "email" IS NULL;
-
Alter the column:
ALTER TABLE "TableName" ALTER COLUMN "email" SET NOT NULL;
4. Changing JSON Structure
Issue:
Modifying the structure of a JSON column can lead to data mismatches.
Example:
- Before:
{oldField: "value"}
- After:
{newField: "value"}
Solution:
-
Add a temporary column:
ALTER TABLE "TableName" ADD COLUMN "metadata_new" JSONB;
-
Transform the data:
UPDATE "TableName" SET "metadata_new" = jsonb_build_object( 'newField', CASE WHEN metadata->>'oldField' IS NOT NULL THEN metadata->>'oldField' ELSE NULL END ) WHERE metadata IS NOT NULL;
-
Drop the old column:
ALTER TABLE "TableName" DROP COLUMN "metadata";
-
Rename the new column:
ALTER TABLE "TableName" RENAME COLUMN "metadata_new" TO "metadata";
5. Array Type Changes
Issue:
Converting an array type (e.g., String[]
to Int[]
) can cause errors if the data types don’t align.
Example:
- Before:
tags String[]
- After:
tags Int[]
Solution:
-
Add a new column:
ALTER TABLE "TableName" ADD COLUMN "tags_new" INTEGER[];
-
Convert data:
UPDATE "TableName" SET "tags_new" = ARRAY( SELECT NULLIF(value, '')::INTEGER FROM unnest("tags") AS value WHERE value ~ '^[0-9]+$' );
-
Drop the old column:
ALTER TABLE "TableName" DROP COLUMN "tags";
-
Rename the new column:
ALTER TABLE "TableName" RENAME COLUMN "tags_new" TO "tags";
6. Adding/Removing Unique Constraints
Issue:
Adding a unique constraint without addressing duplicate values can cause migration failures.
Example:
- Before:
email String
- After:
email String @unique
Solution:
-
Identify duplicates:
SELECT email, COUNT(*) FROM "TableName" GROUP BY email HAVING COUNT(*) > 1;
-
Handle duplicates:
WITH duplicates AS ( SELECT email, ROW_NUMBER() OVER (PARTITION BY email ORDER BY id) AS row_num FROM "TableName" ) UPDATE "TableName" t SET email = t.email || '_' || d.row_num FROM duplicates d WHERE t.email = d.email AND d.row_num > 1;
-
Add the constraint:
ALTER TABLE "TableName" ADD CONSTRAINT email_unique UNIQUE (email);
Best Practices for Safe Schema Changes
-
Backup First:
pg_dump -U username -d database_name > backup.sql
-
Test in Development:
- Create a development database.
- Restore the backup.
- Test migrations.
-
Use Transactions:
BEGIN; -- Migration steps COMMIT;
-
Implement Rollback Plans:
- Save original data in a backup table.
- Rollback if necessary.
Conclusion
Schema changes in Prisma require meticulous planning and execution. By following these structured solutions and best practices, you can ensure safe migrations while maintaining data integrity.
If you found this article helpful, consider buying me a coffee to support my work!
Featured ones: