Logo

dev-resources.site

for different kinds of informations.

Common Data Loss Scenarios & Solutions in Prisma Schema Changes

Published at
1/7/2025
Categories
prisma
sql
postgres
webdev
Author
Atul Vishwakarma
Categories
4 categories in total
prisma
open
sql
open
postgres
open
webdev
open
Common Data Loss Scenarios & Solutions in Prisma Schema Changes

Common Data Loss Scenarios & Solutions in Prisma Schema Changes

When evolving a database schema using Prisma, care must be taken to ensure data integrity and avoid loss. Below, we explore common data loss scenarios and provide step-by-step solutions to address them effectively.

1. Enum to String Conversion

Issue:

Converting an enum column to a string type can result in data inconsistencies.

Example:

  • Before: payedBy Payment_By @default(NONE)
  • After: payedBy String?

Solution:

  1. Add a new column:

    ALTER TABLE "Orders" ADD COLUMN "payedBy_new" TEXT;
    
  2. Copy data:

    UPDATE "Orders" SET "payedBy_new" = "payedBy"::text;
    
  3. Drop old column:

    ALTER TABLE "Orders" DROP COLUMN "payedBy";
    
  4. Rename the new column:

    ALTER TABLE "Orders" RENAME COLUMN "payedBy_new" TO "payedBy";
    

2. Changing Column Type (e.g., Int to Decimal)

Issue:

Directly altering a column type can cause data loss.

Example:

  • Before: amount Int
  • After: amount Decimal

Solution:

  1. Add a new column:

    ALTER TABLE "TableName" ADD COLUMN "amount_new" DECIMAL;
    
  2. Copy data:

    UPDATE "TableName" SET "amount_new" = "amount"::DECIMAL;
    
  3. Drop old column:

    ALTER TABLE "TableName" DROP COLUMN "amount";
    
  4. Rename the new column:

    ALTER TABLE "TableName" RENAME COLUMN "amount_new" TO "amount";
    

3. Making a Nullable Column Non-Nullable

Issue:

Enforcing a non-null constraint without handling existing NULL values can break queries.

Example:

  • Before: email String?
  • After: email String

Solution:

  1. Populate NULL values with placeholders:

    UPDATE "TableName" SET "email" = '[email protected]' WHERE "email" IS NULL;
    
  2. Alter the column:

    ALTER TABLE "TableName" ALTER COLUMN "email" SET NOT NULL;
    

4. Changing JSON Structure

Issue:

Modifying the structure of a JSON column can lead to data mismatches.

Example:

  • Before: {oldField: "value"}
  • After: {newField: "value"}

Solution:

  1. Add a temporary column:

    ALTER TABLE "TableName" ADD COLUMN "metadata_new" JSONB;
    
  2. Transform the data:

    UPDATE "TableName" SET "metadata_new" = jsonb_build_object(
       'newField',
       CASE WHEN metadata->>'oldField' IS NOT NULL THEN metadata->>'oldField' ELSE NULL END
    ) WHERE metadata IS NOT NULL;
    
  3. Drop the old column:

    ALTER TABLE "TableName" DROP COLUMN "metadata";
    
  4. Rename the new column:

    ALTER TABLE "TableName" RENAME COLUMN "metadata_new" TO "metadata";
    

5. Array Type Changes

Issue:

Converting an array type (e.g., String[] to Int[]) can cause errors if the data types donโ€™t align.

Example:

  • Before: tags String[]
  • After: tags Int[]

Solution:

  1. Add a new column:

    ALTER TABLE "TableName" ADD COLUMN "tags_new" INTEGER[];
    
  2. Convert data:

    UPDATE "TableName" SET "tags_new" = ARRAY(
       SELECT NULLIF(value, '')::INTEGER
       FROM unnest("tags") AS value
       WHERE value ~ '^[0-9]+$'
    );
    
  3. Drop the old column:

    ALTER TABLE "TableName" DROP COLUMN "tags";
    
  4. Rename the new column:

    ALTER TABLE "TableName" RENAME COLUMN "tags_new" TO "tags";
    

6. Adding/Removing Unique Constraints

Issue:

Adding a unique constraint without addressing duplicate values can cause migration failures.

Example:

  • Before: email String
  • After: email String @unique

Solution:

  1. Identify duplicates:

    SELECT email, COUNT(*) FROM "TableName" GROUP BY email HAVING COUNT(*) > 1;
    
  2. Handle duplicates:

    WITH duplicates AS (
       SELECT email, ROW_NUMBER() OVER (PARTITION BY email ORDER BY id) AS row_num
       FROM "TableName"
    )
    UPDATE "TableName" t
    SET email = t.email || '_' || d.row_num
    FROM duplicates d
    WHERE t.email = d.email AND d.row_num > 1;
    
  3. Add the constraint:

    ALTER TABLE "TableName" ADD CONSTRAINT email_unique UNIQUE (email);
    

Best Practices for Safe Schema Changes

  1. Backup First:

    pg_dump -U username -d database_name > backup.sql
    
  2. Test in Development:

    • Create a development database.
    • Restore the backup.
    • Test migrations.
  3. Use Transactions:

    BEGIN;
    -- Migration steps
    COMMIT;
    
  4. Implement Rollback Plans:

    • Save original data in a backup table.
    • Rollback if necessary.

Conclusion

Schema changes in Prisma require meticulous planning and execution. By following these structured solutions and best practices, you can ensure safe migrations while maintaining data integrity.

If you found this article helpful, consider buying me a coffee to support my work!

Featured ones: