Logo

dev-resources.site

for different kinds of informations.

Distance de Levenshtein : Le Guide Ultime pour Mesurer la Similarité Textuelle

Published at
11/7/2024
Categories
python
ai
whisper
Author
jmegnidro
Categories
3 categories in total
python
open
ai
open
whisper
open
Author
9 person written this
jmegnidro
open
Distance de Levenshtein : Le Guide Ultime pour Mesurer la Similarité Textuelle

La distance de Levenshtein, aussi connue sous le nom de distance d'édition, est une mesure essentielle pour évaluer la similarité entre deux chaînes de caractères. Elle compte le nombre minimal d'opérations nécessaires pour transformer une chaîne en une autre. Ces opérations incluent :

  1. Insertion : Ajouter un caractère.
  2. Suppression : Supprimer un caractère.
  3. Substitution : Remplacer un caractère par un autre.

Ce concept est au cœur de nombreuses applications modernes, telles que la correction orthographique, la recherche floue, et la comparaison ADN.

Le Concept Mathématique

La distance de Levenshtein entre deux chaînes ( A ) et ( B ) de longueurs ( n ) et ( m ), respectivement, peut être calculée en utilisant une approche dynamique. On définit une matrice ( D ) de dimensions ((n+1) \times (m+1)), où chaque ( D[i][j] ) représente le coût minimum pour transformer les ( i ) premiers caractères de ( A ) en les ( j ) premiers caractères de ( B ).

La formule de récurrence est la suivante :

Image description

Implémentation en Python

Voici une implémentation simple en Python pour calculer la distance de Levenshtein :

def levenshtein_distance(a, b):
    n, m = len(a), len(b)
    dp = [[0] * (m + 1) for _ in range(n + 1)]

    for i in range(n + 1):
        for j in range(m + 1):
            if i == 0:
                dp[i][j] = j
            elif j == 0:
                dp[i][j] = i
            elif a[i - 1] == b[j - 1]:
                dp[i][j] = dp[i - 1][j - 1]
            else:
                dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])

    return dp[n][m]

# Exemple d'utilisation
print(levenshtein_distance("kitten", "sitting"))  # Sortie : 3
Enter fullscreen mode Exit fullscreen mode

Applications Pratiques

1. Correction Orthographique

Les correcteurs orthographiques utilisent Levenshtein pour suggérer des mots proches en cas de fautes de frappe. Par exemple, si vous tapez helo, il peut suggérer hello ou hero.

2. Recherche Floue

Dans les moteurs de recherche, la distance de Levenshtein permet d'obtenir des résultats même lorsque l'utilisateur fait des erreurs de frappe.

3. Comparaison ADN

En bioinformatique, cette distance aide à mesurer la similarité entre deux séquences ADN, chaque opération représentant une mutation possible.

4. Authentification et Détection de Fraude

Les systèmes de détection d'usurpation d'identité peuvent comparer les entrées utilisateur avec les données existantes, en tenant compte des petites différences textuelles.

Optimisation : Distance de Levenshtein avec Mémoire Réduite

L'algorithme classique utilise une matrice complète, ce qui peut être gourmand en mémoire. Heureusement, on peut optimiser en utilisant seulement deux lignes de mémoire, car chaque calcul ( D[i][j] ) dépend uniquement de ( D[i-1][j] ), ( D[i][j-1] ), et ( D[i-1][j-1] ).

def optimized_levenshtein(a, b):
    n, m = len(a), len(b)
    prev = list(range(m + 1))
    curr = [0] * (m + 1)

    for i in range(1, n + 1):
        curr[0] = i
        for j in range(1, m + 1):
            insert = curr[j - 1] + 1
            delete = prev[j] + 1
            substitute = prev[j - 1] + (0 if a[i - 1] == b[j - 1] else 1)
            curr[j] = min(insert, delete, substitute)
        prev, curr = curr, prev

    return prev[m]

# Exemple d'utilisation
print(optimized_levenshtein("kitten", "sitting"))  # Sortie : 3
Enter fullscreen mode Exit fullscreen mode

Conclusion

La distance de Levenshtein est un outil puissant, polyvalent et largement utilisé dans de nombreux domaines. Bien qu'il soit simple à comprendre, ses optimisations et applications complexes démontrent sa valeur dans les systèmes modernes.

En explorant plus loin, on peut aussi se tourner vers des variantes comme la distance de Damerau-Levenshtein, qui prend en compte les transpositions. Vous êtes désormais armé pour intégrer cet outil dans vos projets ou simplement impressionner vos pairs avec vos connaissances approfondies !

Vous avez des questions ou des idées sur la distance de Levenshtein ? Partagez-les dans les commentaires ! 🚀

whisper Article's
30 articles in total
Favicon
How Machines Hear and Understand Us
Favicon
Wisper, ffmpeg을 활용한 비디오 자막 자동 생성
Favicon
Most affordable Whisper API
Favicon
AI and Emotional Dependency: A Growing Concern
Favicon
Distance de Levenshtein : Le Guide Ultime pour Mesurer la Similarité Textuelle
Favicon
Creating a Free AI voice-to-text transcription Program using Whisper
Favicon
Do Pet Translator Apps Work? Unveiling the Science Behind Dog Translator Apps & More!
Favicon
Build A Transcription App with Strapi, ChatGPT, & Whisper: Part 1
Favicon
免費開源的語音辨識功能:Cloudflare Workers AI + Whisper
Favicon
fishaudio/fish-speech-1.2-torrent
Favicon
Pitch-Tonic
Favicon
Making My Own Karaoke Videos with AI
Favicon
When smart algorithms beat artificial intelligence -brute force
Favicon
Deploying whisperX on AWS SageMaker as Asynchronous Endpoint
Favicon
Generate subtitles with OpenAI Whisper and Eyevinn OSC
Favicon
Deploying OpenAI's Whisper Large V3 Model on SageMaker Using Hugging Face Libraries
Favicon
免費開源的語音辨識功能:Google Colab + Faster Whisper
Favicon
免費開源的語音辨識功能:Google Colab + Whisper large v3
Favicon
OpenAI Whisper new model Large V3 just released and amazing
Favicon
Write a video translation and voiceover tool in Python
Favicon
Optimise OpenAI Whisper API: Audio Format, Sampling Rate and Quality
Favicon
Using Nodejs Buffers to transcribe an Audio file using OpenAI's Whisper service
Favicon
OpenAI Playground: Unlocking the Potential of AI Models
Favicon
How to get text from any YT video | Free transcribe program 🖹
Favicon
How to use Whisper AI (using Google Colab)
Favicon
OpenAI Whisper Deployment on AWS as Asynchronous Endpoint
Favicon
How I converted a podcast into a knowledge base using Orama search and OpenAI whisper and Astro
Favicon
Achieving 90% Cost-Effective Transcription and Translation with Optimised OpenAI Whisper on Q Blocks
Favicon
Translate Speech Into Japanese (open source web app)
Favicon
Build a Telegram voice chatbot using ChatGPT API and Whisper

Featured ones: