Logo

dev-resources.site

for different kinds of informations.

Why Is Spark Slow??

Published at
12/1/2024
Categories
spark
python
etl
Author
hirayuki
Categories
3 categories in total
spark
open
python
open
etl
open
Author
8 person written this
hirayuki
open
Why Is Spark Slow??

Why Is Spark Slow??

Starting with an eye-catching title, "Why is Spark slow??," it's important to note that calling Spark "slow" can mean various things. Is it slow at aggregations? Data loading? Different cases exist. Also, "Spark" is a broad term, and its performance depends on factors like the programming language and usage context. So, let's refine the title to be more precise before diving in.

Since I primarily use Spark with Python on Databricks, I'll narrow the scope further.

The refined title will be:

"First Impressions of Spark: 'I Heard It Was Fast, But Why Does It Feel Slow?' A Beginner's Perspective"


Motivation for Writing (Casual Thoughts)

As someone who works extensively with pandas, NumPy, and machine learning libraries, I admired the allure of Spark's ability to handle big data with parallel and distributed processing. When I finally got to use Spark for work, I was puzzled by scenarios where it seemed slower than pandas. Unsure of what was wrong, I discovered several insights and would like to share them.


When Does Your Spark Become Slow?

Before Getting to the Main Topic

Let's briefly cover Spark's basic architecture.

Image description

(Cluster Mode Overview)

A Spark cluster consists of Worker Nodes, which perform the actual processing, and a Driver Node, which coordinates and plans the execution. This architecture influences everything discussed below, so keep it in mind.

Now, onto the main points.


1. The Dataset Isn’t Large Enough

Spark is optimized for large-scale data processing, though it can handle small datasets as well. However, take a look at this benchmark:

Image description

(Benchmarking Apache Spark on a Single Node Machine)

The results show that for datasets under 15GB, pandas outperforms Spark in aggregation tasks. Why? In a nutshell, the overhead of Spark's optimizations outweighs the benefits for small datasets.

The link shows cases where Spark isn't slower, but these are often in a local cluster mode. For standalone setups, smaller datasets can be a disadvantage due to network communication overhead between nodes.

  • pandas: Processes everything in-memory on a single machine, with no network or storage I/O.
  • Spark: Uses RDDs (Resilient Distributed Datasets), involves network communication between Workers (if distributed), and incurs overhead in organizing data for parallel processing.

2. Understanding Lazy Evaluation

Spark employs lazy evaluation, meaning transformations are not executed immediately but deferred until an action (e.g., collect, count, show) triggers computation.

Example (pandas):

df = spark.read.table("tpch.lineitem").limit(1000).toPandas()
df["l_tax_percentage"] = df["l_tax"] * 100
for l_orderkey, group_df in df.groupby("l_orderkey"):
    print(l_orderkey, group_df["l_tax_percentage"].mean())
Enter fullscreen mode Exit fullscreen mode

Execution time: 3.04 seconds

Equivalent in Spark:

from pyspark.sql import functions as F
sdf = spark.read.table("tpch.lineitem").limit(1000)
sdf = sdf.withColumn("l_tax_percentage", F.col("l_tax") * 100)

for row in sdf.select("l_orderkey").distinct().collect():
    grouped_sdf = sdf.filter(F.col("l_orderkey") == row.l_orderkey).groupBy("l_orderkey").agg(
        F.mean("l_tax_percentage").alias("avg_l_tax_percentage")
    )
    print(grouped_sdf.show())
Enter fullscreen mode Exit fullscreen mode

Execution time: Still running after 3 minutes.


Why?

  1. Lazy Evaluation: All transformations are queued and only executed during an action like show.
  2. Driver-to-Worker Communication: Operations like collect and show involve data transfer from Workers to the Driver, causing delays.

The Spark code effectively does this in pandas:

for l_orderkey, group_df in df.groupby("l_orderkey"):
    df["l_tax_percentage"] = df["l_tax"] * 100
    print(l_orderkey, group_df["l_tax_percentage"].mean())
Enter fullscreen mode Exit fullscreen mode

Avoid such patterns by using Spark's cache or restructuring the logic to minimize repeated calculations.


3. Watch Out for Shuffles

https://spark.apache.org/docs/latest/rdd-programming-guide.html#shuffle-operations

Shuffles occur when data is redistributed across Workers, typically during operations like groupByKey, join, or repartition. Shuffles can be slow due to:

  • Network Communication between nodes.
  • Global Sorting and Aggregation of data across partitions.

For example, having more Workers doesn't always improve performance during a shuffle.

  • 32GB x 8 Workers can be slower than 64GB x 4 Workers, as fewer Workers reduce inter-node communication.

Conclusion

Did you find this helpful? Spark is an excellent tool when used effectively. Beyond speeding up large-scale data processing, Spark shines with its scalable resource management, especially in the cloud.

Try Spark to optimize your data operations and management!

spark Article's
30 articles in total
Favicon
Like IDE for SparkSQL: Support Pycharm! SparkSQLHelper v2025.1.1 released
Favicon
Enhancing Data Security with Spark: A Guide to Column-Level Encryption - Part 2
Favicon
Time-saver: This IDEA plugin can help you write SparkSQL faster
Favicon
How to Migrate Massive Data in Record Time—Without a Single Minute of Downtime 🕑
Favicon
Why Is Spark Slow??
Favicon
Like IDE for SparkSQL: SparkSQLHelper v2024.1.4 released
Favicon
Mastering Dynamic Allocation in Apache Spark: A Practical Guide with Real-World Insights
Favicon
Auditoria massiva com Lineage Tables do UC no Databricks
Favicon
Platform to practice PySpark Questions
Favicon
Exploring Apache Spark:
Favicon
Big Data
Favicon
Dynamic Allocation Issues On Spark 2.4.8 (Possible Issue with External Shuffle Service?)
Favicon
Entendendo e aplicando estratégias de tunning Apache Spark
Favicon
[API Databricks como serviço interno] dbutils — notebook.run, widgets.getArgument, widgets.text e notebook_params
Favicon
Análise de dados de tráfego aéreo em tempo real com Spark Structured Streaming e Apache Kafka
Favicon
My journey learning Apache Spark
Favicon
Integrating Elasticsearch with Spark
Favicon
Advanced Deduplication Using Apache Spark: A Guide for Machine Learning Pipelines
Favicon
Journey Through Spark SQL
Favicon
Choosing the Right Real-Time Stream Processing Framework
Favicon
Top 5 Things You Should Know About Spark
Favicon
PySpark optimization techniques
Favicon
End-to-End Realtime Streaming Data Engineering Project
Favicon
Machine Learning with Spark and Groovy
Favicon
Hadoop/Spark is too heavy, esProc SPL is light
Favicon
Leveraging PySpark.Pandas for Efficient Data Pipelines
Favicon
Databricks - Variant Type Analysis
Favicon
Comprehensive Guide to Schema Inference with MongoDB Spark Connector in PySpark
Favicon
Troubleshooting Kafka Connectivity with spark streaming
Favicon
Apache Spark 101

Featured ones: