dev-resources.site
for different kinds of informations.
Building a Friends-Themed Chatbot: Exploring Amazon Bedrock for Dialogue Refinement
Hi Everyone,
While browsing the datasets in Kaggle, I came across this dataset where dialogues are provided character-wise from the Friends Series.
The dialogues in the dataset brought back the fun time I had watching the Friends series. There comes the thought of building a chatbot using this dataset.
Initial Thought Process: This is how the initial thought process was, Divide the dialogues character-wise and generate embeddings for each dialogue. Store them in open-search, query them based on the user prompt, and return the most suitable dialog from the index.
Challenges: With the initial thought process converted each dialogue into an embedding using Amazon Bedrock models and stored them in the OpenSearch. However, while querying them, there is a big gap between the user prompt and the returned dialogue.
Solution: Even though it finds the most relevant dialogue based on the user prompt from the available dataset, sometimes it looks completely different. So I thought of adding one more Bedrock model to refine the queried dialogue and provide a relevant response.
Final Conclusion: So what I have done finally is, after querying a similar dialogue, I used a bedrock model which is good in Natural Language Processing to refine the dialogue and provide a relevant response without changing the tone of the dialogue. For this model, I prompted the context with some example prompts.
Finally, the bot came in good shape(To my knowledge ๐).
You can access the bot using this link. Give it a try with your input. I am open to suggestions. Feel free to comment
HERE IS THE LINK: https://friendschat.cloudnirvana.in/
Step-by-step implementation:
Refine the dataset and store the dialogues character-wise
Generate embeddings and store them in OpenSearch
Query the OpenSearch index and refine the received dialogues using the Titan Model
Deploy a Front-End application to chat
Refine the dataset and store the dialogues character-wise:
Download the dataset from Kaggle using the link shared above
Extract the zip file. It contains 3 files. We are gonna use friends.csv file
Use the below script to divide the dialogues character-wise and store them in a folder
import pandas as pd
import os
df = pd.read_csv('friends.csv')
refined_df = df[['text','speaker']]
characters = ['Monica Geller', 'Joey Tribbiani', 'Chandler Bing', 'Phoebe Buffay', 'Ross Geller', 'Rachel Green']
output_dir = "char_wise_dialogs"
os.makedirs(output_dir, exist_ok=True)
for character in characters:
char_dialogs = refined_df[refined_df['speaker'] == character]
file_name = f"{character.replace(' ','_')}_dialogues.csv"
output_file = os.path.join(output_dir, file_name)
char_dialogs.to_csv(output_file, index=False)
print(f"Saved {character}'s dialogues to {output_file}")
Generate Embeddings and store them in OpenSearch:
Visit the OpenSearch service and create a domain with t3.medium.search instance type with 10GB of Storage in a single AZ
Make the OpenSearch domain public and create a master user for login
Use the below script to iterate through the dialogues, Generate embeddings, and store them in an index
We will be using the model amazon.titan-embed-text-v2:0
import boto3
import pandas as pd
import os
import json
from opensearchpy import OpenSearch, RequestsHttpConnection, helpers
# AWS OpenSearch domain details
OPENSEARCH_HOST = "open search endpoint without https" # Replace with your endpoint
INDEX_NAME = "friends-dialogues"
# Initialize OpenSearch client
client = OpenSearch(
hosts=[{'host': OPENSEARCH_HOST, 'port': 443}],
http_auth=('admin', '******'), # Replace with your OpenSearch credentials
use_ssl=True,
verify_certs=True,
connection_class=RequestsHttpConnection
)
# Initialize Bedrock client
bedrock_client = boto3.client('bedrock-runtime', region_name='us-east-1') # Replace with your region
# Folder containing dialogues
input_folder = "char_wise_dialogs"
# Batch size for processing
BATCH_SIZE = 20
# Function to generate an embedding using Bedrock
def generate_embedding(text):
payload = {
"inputText": text
}
response = bedrock_client.invoke_model(
modelId="amazon.titan-embed-text-v2:0",
contentType="application/json",
accept="application/json",
body=json.dumps(payload)
)
response_body = json.loads(response['body'].read())
return response_body.get('embedding')
# Function to index documents in bulk in OpenSearch
def bulk_index_documents(batch):
actions = [
{
"_index": INDEX_NAME,
"_source": {
"character": doc["character"],
"dialogue": doc["dialogue"],
"embedding": doc["embedding"]
}
}
for doc in batch
]
helpers.bulk(client, actions)
# Create the index in OpenSearch (if not already created)
if not client.indices.exists(INDEX_NAME):
client.indices.create(index=INDEX_NAME, body={
"settings": {
"number_of_shards": 1,
"number_of_replicas": 1,
"index": {
"knn": True # Enable kNN search for this index
}
},
"mappings": {
"properties": {
"character": {"type": "keyword"},
"dialogue": {"type": "text"},
"embedding": {
"type": "knn_vector",
"dimension": 1024 # Replace with the embedding size
}
}
}
})
print(f"Created index with knn_vector: {INDEX_NAME}")
# Process each character file
for file_name in os.listdir(input_folder):
if file_name.endswith('.csv'):
# Read character dialogues
character_file = os.path.join(input_folder, file_name)
df = pd.read_csv(character_file)
# Process in batches
batch = []
for index, row in df.iterrows():
dialogue = row['text']
character = row['speaker']
try:
# Generate embedding for each dialogue
embedding = generate_embedding(dialogue)
batch.append({"dialogue": dialogue, "character": character, "embedding": embedding})
# Process the batch if it reaches the batch size
if len(batch) == BATCH_SIZE:
# Bulk index the batch into OpenSearch
bulk_index_documents(batch)
print(f"Indexed batch of size {len(batch)}")
batch = [] # Reset the batch
except Exception as e:
print(f"Error processing dialogue: {dialogue[:50]} - {e}")
# Process any remaining documents in the last batch
if batch:
bulk_index_documents(batch)
print(f"Indexed remaining batch of size {len(batch)}")
Query the OpenSearch index and refine the received dialogues using the Titan Model:
Once the index has our data, Letโs create a script to query the index
Create a Lambda function with Python 3.9
Copy and paste the following code in the Lambda function and provide the necessary permissions
This script will query similar dialogues from the index and pass the received dialogue to the next model
We will be using **amazon.titan-text-express-v1 **model to refine the dialogue and add some relevant data to match the user prompt
Once the Lamba is ready, Create an API in API Gateway and add POST method for sending user message
import boto3
import json
from opensearchpy import OpenSearch, RequestsHttpConnection
# OpenSearch configuration
OPENSEARCH_HOST = "open search endpoint without https"
INDEX_NAME = "friends-dialogues"
# Initialize OpenSearch client
client = OpenSearch(
hosts=[{'host': OPENSEARCH_HOST, 'port': 443}],
http_auth=('admin', '******'),
use_ssl=True,
verify_certs=True,
connection_class=RequestsHttpConnection
)
# Bedrock clients for embedding and refinement
bedrock_client = boto3.client('bedrock-runtime', region_name='us-east-1')
# Function to generate embedding for user input
def generate_embedding(text):
payload = {"inputText": text}
response = bedrock_client.invoke_model(
modelId="amazon.titan-embed-text-v2:0",
contentType="application/json",
accept="application/json",
body=json.dumps(payload)
)
response_body = json.loads(response['body'].read())
return response_body.get('embedding')
# Function to query OpenSearch for similar dialogues
def query_opensearch(user_embedding):
query = {
"size": 1,
"query": {
"knn": {
"embedding": {
"vector": user_embedding,
"k": 1
}
}
}
}
response = client.search(index=INDEX_NAME, body=query)
hits = response["hits"]["hits"]
if hits:
return hits[0]["_source"]
return None
def refine_response(user_prompt, character, retrieved_dialogue):
# Construct a guided and controlled prompt
prompt = (
f"You are an assistant generating responses for a Friends-themed chatbot. Your task is to:\n"
f"1. Respond in the tone and style of the specified character.\n"
f"2. Avoid adding irrelevant details or extra sentences.\n"
f"3. Ensure responses are casual and character-specific.\n"
f"4. Exclude any metadata or instructional text in the response.\n\n"
f"Examples:\n"
f"- User Prompt: \"What's your favorite food?\"\n"
f" Character: Joey Tribbiani\n"
f" Dialogue: \"Joey doesn't share food!\"\n"
f" Response: \"Joey doesn't share food! But I do love a big meatball sub.\"\n\n"
f"- User Prompt: \"Let's go for a vacation.\"\n"
f" Character: Ross Geller\n"
f" Dialogue: \"Spring vacation.\"\n"
f" Response: \"Spring vacation! Iโll pack my fossils!\"\n\n"
f"User Prompt: {user_prompt}\n"
f"Retrieved Dialogue: \"{retrieved_dialogue}\"\n"
f"Character: {character}\n\n"
f"Now, generate a response as the specified character, ensuring it aligns with the dialogue and the user's prompt."
)
payload = {"inputText": prompt}
try:
# Invoke the Titan Text G1 - Express model
response = bedrock_client.invoke_model(
modelId="amazon.titan-text-g1-express:0",
contentType="application/json",
accept="application/json",
body=json.dumps(payload)
)
response_body = json.loads(response['body'].read())
generated_response = response_body['results'][0]['outputText']
# Post-process the response
# 1. Remove metadata or prompt details
if "User Prompt" in generated_response:
generated_response = generated_response.split("User Prompt")[0].strip()
# 2. Limit response length
max_length = 150
if len(generated_response) > max_length:
generated_response = generated_response[:max_length].rsplit(" ", 1)[0] + "..."
# 3. Ensure relevance: Fallback to retrieved dialogue if response is invalid
if not generated_response or "irrelevant" in generated_response.lower():
return retrieved_dialogue
return generated_response
except Exception as e:
print(f"Error refining response: {e}")
# Fallback to the retrieved dialogue in case of an error
return retrieved_dialogue
# Construct a controlled and guided prompt
prompt = (
f"You are an assistant generating responses for a Friends-themed chatbot. Your task is to:\n"
f"1. Maintain the original tone and personality of the character.\n"
f"2. Avoid adding irrelevant details or extra sentences.\n"
f"3. Ensure the response aligns with the retrieved dialogue.\n"
f"4. Make responses casual and consistent with the character's personality.\n\n"
f"Examples:\n"
f"- User Prompt: \"What's your favorite food?\"\n"
f" Character: Joey Tribbiani\n"
f" Dialogue: \"Joey doesn't share food!\"\n"
f" Response: \"Joey doesn't share food! But I do love a big meatball sub.\"\n\n"
f"- User Prompt: \"I feel sad.\"\n"
f" Character: Chandler Bing\n"
f" Dialogue: \"I'm sorry you're feeling this way.\"\n"
f" Response: \"I'm sorry you're feeling this way. But remember, I can make you laugh. Want a joke?\"\n\n"
f"User Prompt: {user_prompt}\n"
f"Retrieved Dialogue: \"{retrieved_dialogue}\"\n"
f"Character: {character}\n\n"
f"Now, generate a response that refines the retrieved dialogue to better match the user's prompt while staying true to the character's tone and avoiding verbosity."
)
# Payload for the Bedrock API
payload = {"inputText": prompt}
try:
# Invoke the Titan Text G1 - Express model
response = bedrock_client.invoke_model(
modelId="amazon.titan-text-express-v1",
contentType="application/json",
accept="application/json",
body=json.dumps(payload)
)
response_body = json.loads(response['body'].read())
generated_response = response_body['results'][0]['outputText']
# Post-processing: Ensure the refined response adheres to guidelines
# 1. Limit response length
max_length = 150
if len(generated_response) > max_length:
generated_response = generated_response[:max_length] + "..."
# 2. Ensure relevance: If response is missing or irrelevant, fallback to retrieved dialogue
if not generated_response or "irrelevant" in generated_response.lower(): # Replace with advanced checks if needed
return retrieved_dialogue
return generated_response
except Exception as e:
print(f"Error refining response: {e}")
# Fallback to the retrieved dialogue in case of an error
return retrieved_dialogue
# Construct a controlled prompt
prompt = (
f"You are an assistant generating responses for a Friends-themed chatbot. Your task is to:\n"
f"1. Maintain the original tone and personality of the character.\n"
f"2. Avoid adding irrelevant details or extra sentences.\n"
f"3. Ensure the response aligns with the retrieved dialogue.\n\n"
f"Here is the context:\n"
f"- User Prompt: {user_prompt}\n"
f"- Retrieved Dialogue: \"{retrieved_dialogue}\"\n"
f"- Character: {character}\n\n"
f"Now, generate a response that refines the retrieved dialogue to better match the user's prompt while staying true to the character's tone and avoiding verbosity."
)
# Payload for the Bedrock API
payload = {"inputText": prompt}
try:
# Invoke the Titan Text G1 - Express model
response = bedrock_client.invoke_model(
modelId="amazon.titan-text-express-v1",
contentType="application/json",
accept="application/json",
body=json.dumps(payload)
)
response_body = json.loads(response['body'].read())
generated_response = response_body['results'][0]['outputText']
# Post-processing: Ensure the refined response adheres to guidelines
# 1. Limit response length
max_length = 150
generated_response = generated_response[:max_length]
# 2. Ensure relevance by comparing with the retrieved dialogue
# If generated response deviates significantly, fallback to the retrieved dialogue
if not generated_response or "irrelevant" in generated_response.lower(): # Placeholder for advanced checks
return retrieved_dialogue
return generated_response
except Exception as e:
print(f"Error refining response: {e}")
# Fallback to the retrieved dialogue in case of an error
return retrieved_dialogue
# Lambda function handler
def lambda_handler(event, context):
try:
# Extract user input
body = json.loads(event["body"])
user_input = body["message"]
# Generate embedding for user input
user_embedding = generate_embedding(user_input)
# Query OpenSearch for the most relevant dialogue
result = query_opensearch(user_embedding)
if not result:
return {
"statusCode": 200,
"headers": {
"Content-Type": "application/json",
"Access-Control-Allow-Origin": "*"
},
"body": json.dumps({"character": "Unknown", "response": "I'm not sure how to respond to that!"})
}
# Refine the response
# refined_response = f"{result['dialogue']}"
refined_response = refine_response(user_input, result["character"], result["dialogue"])
print(refined_response)
# Return the refined response
return {
"statusCode": 200,
"headers": {
"Content-Type": "application/json",
"Access-Control-Allow-Origin": "https://friendschat.cloudnirvana.in"
},
"body": json.dumps({
"character": result["character"],
"response": refined_response
})
}
except Exception as e:
return {
"statusCode": 500,
"headers": {
"Content-Type": "application/json",
"Access-Control-Allow-Origin": "https://friendschat.cloudnirvana.in"
},
"body": json.dumps({"error": str(e)})
}
Deploy a Front-End application to chat:
Once everything is ready, letโs build a simple front-end application and host it on the S3 Static web hosting.
If you have your own domain, Add it to Route 53 and point it to the S3 bucket.
Use the below code to create an HTML file and host it in an S3 bucket
Replace the API link with your own API
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Friends Chatbot</title>
<style>
#chat-container {
width: 90%;
max-width: 600px;
margin: 20px auto;
font-family: Arial, sans-serif;
}
#messages {
height: 400px;
overflow-y: auto;
border: 1px solid #ccc;
padding: 10px;
border-radius: 5px;
background-color: #f9f9f9;
}
.message {
margin: 10px 0;
}
.user {
text-align: right;
color: blue;
}
.bot {
text-align: left;
color: green;
}
#input-container {
display: flex;
margin-top: 10px;
}
#user-input {
flex: 1;
padding: 10px;
border: 1px solid #ccc;
border-radius: 5px;
}
button {
margin-left: 5px;
padding: 10px 20px;
background-color: #007bff;
color: white;
border: none;
border-radius: 5px;
cursor: pointer;
}
button:hover {
background-color: #0056b3;
}
</style>
</head>
<body>
<div id="chat-container">
<div id="messages"></div>
<div id="input-container">
<input type="text" id="user-input" placeholder="Type your message...">
<button onclick="sendMessage()">Send</button>
</div>
</div>
<script>
const apiEndpoint = "replace with you api gateway endpoint";
function sendMessage() {
const inputField = document.getElementById("user-input");
const message = inputField.value.trim();
if (!message) return;
const messagesContainer = document.getElementById("messages");
// Add user message
const userMessage = document.createElement("div");
userMessage.className = "message user";
userMessage.textContent = message;
messagesContainer.appendChild(userMessage);
// Clear input
inputField.value = "";
// Send API request
fetch(apiEndpoint, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ message }),
})
.then((response) => response.json())
.then((data) => {
// Add bot response
const botMessage = document.createElement("div");
botMessage.className = "message bot";
botMessage.textContent = `${data.character}: ${data.response}`;
messagesContainer.appendChild(botMessage);
// Scroll to bottom
messagesContainer.scrollTop = messagesContainer.scrollHeight;
})
.catch((error) => {
console.error("Error:", error);
const botMessage = document.createElement("div");
botMessage.className = "message bot";
botMessage.textContent = "Error connecting to the chatbot.";
messagesContainer.appendChild(botMessage);
});
}
</script>
</body>
</html>
Thatโs it. Visit my hosted solution using the above link shared and share your feedback through the comments.
Thanks ๐
Featured ones: