dev-resources.site
for different kinds of informations.
atleast_3d in PyTorch
Published at
12/30/2024
Categories
python
pytorch
atleast3d
function
Author
hyperkai
Author
8 person written this
hyperkai
open
*Memos:
- My post explains atleast_1d().
- My post explains atleast_2d().
atleast_3d() can get the view of the one or more 3D or more D tensors of zero or more elements by only changing one or more 0D, 1D or 2D tensors to one or more 3D tensors from the one or more 0D or more D tensors of zero or more elements as shown below:
*Memos:
-
atleast_3d()
can be used with torch but not with a tensor. - The 1st or more arguments with
torch
are*tensors
(Required-Type:tensor
ofint
,float
,complex
orbool
ortuple
or list oftensor
ofint
,float
,complex
orbool
): *Memos:- If setting more than one tensors, a tuple of tensors is returned otherwise a tensor is returned.
- Don't use any keyword like
*tensors=
,tensor
orinput
.
- Setting no arguments returns an empty tuple.
import torch
tensor0 = torch.tensor(2) # 0D tensor
torch.atleast_3d(tensor0)
# tensor([[[2]]])
tensor0 = torch.tensor(2) # 0D tensor
tensor1 = torch.tensor([2, 7, 4]) # 1D tensor
tensor2 = torch.tensor([[2, 7, 4], [8, 3, 2]]) # 2D tensor
tensor3 = torch.tensor([[[2, 7, 4], [8, 3, 2]], # 3D tensor
[[5, 0, 8], [3, 6, 1]]])
tensor4 = torch.tensor([[[[2, 7, 4], [8, 3, 2]], # 4D tensor
[[5, 0, 8], [3, 6, 1]]],
[[[9, 4, 7], [1, 0, 5]],
[[6, 7, 4], [2, 1, 9]]]])
torch.atleast_3d(tensor0, tensor1, tensor2, tensor3, tensor4)
torch.atleast_3d((tensor0, tensor1, tensor2, tensor3, tensor4))
# (tensor([[[2]]]),
# tensor([[[2], [7], [4]]]),
# tensor([[[2], [7], [4]],
# [[8], [3], [2]]]),
# tensor([[[2, 7, 4], [8, 3, 2]],
# [[5, 0, 8], [3, 6, 1]]]),
# tensor([[[[2, 7, 4], [8, 3, 2]],
# [[5, 0, 8], [3, 6, 1]]],
# [[[9, 4, 7], [1, 0, 5]],
# [[6, 7, 4], [2, 1, 9]]]]))
tensor0 = torch.tensor(2) # 0D tensor
tensor1 = torch.tensor([2, 7, 4]) # 1D tensor
tensor2 = torch.tensor([[2., 7., 4.], # 2D tensor
[8., 3., 2.]])
tensor3 = torch.tensor([[[2.+0.j, 7.+0.j, 4.+0.j], # 3D tensor
[8.+0.j, 3.+0.j, 2.+0.j]],
[[5.+0.j, 0.+0.j, 8.+0.j],
[3.+0.j, 6.+0.j, 1.+0.j]]])
tensor4 = torch.tensor([[[[True, False, True], [False, True, False]],
[[True, False, True], [False, True, False]]],
[[[True, False, True], [False, True, False]],
[[True, False, True], [False, True, False]]]])
# 4D tensor
torch.atleast_3d(tensor0, tensor1, tensor2, tensor3, tensor4)
# (tensor([[[2]]]),
# tensor([[[2], [7], [4]]]),
# tensor([[[2.], [7.], [4.]],
# [[8.], [3.], [2.]]]),
# tensor([[[2.+0.j, 7.+0.j, 4.+0.j],
# [8.+0.j, 3.+0.j, 2.+0.j]],
# [[5.+0.j, 0.+0.j, 8.+0.j],
# [3.+0.j, 6.+0.j, 1.+0.j]]]),
# tensor([[[[True, False, True], [False, True, False]],
# [[True, False, True], [False, True, False]]],
# [[[True, False, True], [False, True, False]],
torch.atleast_3d()
# ()
pytorch Article's
30 articles in total
Face Recognition with Python and FaceNet
read article
RandomAffine in PyTorch
read article
CocoCaptions in PyTorch (2)
read article
CocoDetection in PyTorch (3)
read article
CocoDetection in PyTorch (2)
read article
square in PyTorch
read article
any in PyTorch
read article
atleast_2d in PyTorch
read article
atleast_1d in PyTorch
read article
atleast_3d in PyTorch
currently reading
fmod in PyTorch
read article
remainder in PyTorch
read article
sub in PyTorch
read article
mul in PyTorch
read article
linspace in PyTorch
read article
arange in PyTorch
read article
unsqueeze in PyTorch
read article
squeeze in PyTorch
read article
all in PyTorch
read article
ColorJitter in PyTorch
read article
ImageNet in PyTorch
read article
Asynchronous Python: What You Need to Know ๐๐๐
read article
Install PyTorch and JupyterLab on Ubuntu
read article
Datasets for Computer Vision (5)
read article
AI Pronunciation Trainer
read article
CocoCaptions in PyTorch (1)
read article
CocoCaptions in PyTorch (3)
read article
CocoDetection in PyTorch (1)
read article
pow in PyTorch
read article
Why PyTorch Stole the Spotlight from TensorFlow?
read article
Featured ones: