Logo

dev-resources.site

for different kinds of informations.

Using WebSocket with Python

Published at
10/11/2024
Categories
python
websocket
asyncrounous
multithreading
Author
m_sea_bass
Author
10 person written this
m_sea_bass
open
Using WebSocket with Python

What is WebSocket?

WebSocket is a protocol that enables real-time, bidirectional communication between a browser and a server. Traditional HTTP communication involves the client sending a request and the server responding to exchange data. In contrast, with WebSocket, once the initial connection is established, both the client and the server can send and receive messages to each other without needing to repeatedly establish new connections.

Recently, interactive services like the OpenAI Realtime API and Hume AI have become more common, leading to an anticipated increase in demand for WebSocket. This article introduces the basics of how to use WebSocket, along with a look into related asynchronous processing.

Using WebSocket with Python

In Python, you can use WebSocket as shown below:

import asyncio
import websockets

uri = "ws://..."

async def hello():
    async with websockets.connect(uri) as websocket:
        await websocket.send("Hello, Server!")
        response = await websocket.recv()
        print(f"Server says: {response}")

asyncio.run(hello())
Enter fullscreen mode Exit fullscreen mode
  1. Connect to the WebSocket server using websockets.connect(uri).
  2. Send a message with websocket.send(message).
  3. Receive a message using websocket.recv().

Asynchronous Processing

The async and await used in the previous code represent asynchronous processing. Asynchronous processing is especially effective when executing multiple tasks simultaneously.

import asyncio

async def task1():
    print("Task 1: Start")
    await asyncio.sleep(2)  # Wait for 2 seconds
    print("Task 1: End")

async def task2():
    print("Task 2: Start")
    await asyncio.sleep(1)  # Wait for 1 second
    print("Task 2: End")

async def main():
    await asyncio.gather(task1(), task2())

asyncio.run(main())
Enter fullscreen mode Exit fullscreen mode

In functions that use await, other tasks can run while waiting for the completion of the current task. This allows for efficient switching between tasks.

Asynchronous Processing and Multithreading

Multithreading also handles multiple tasks, but there is a difference in how threads are utilized:

  • In multithreading, each task has its own thread, and the program switches between tasks while waiting for certain processes to complete.
  • Asynchronous processing, on the other hand, does not create new threads but switches between tasks.

Multithreading is effective when working with CPU-intensive or blocking operations. However, it has drawbacks such as overhead from thread switching (context switching) and increased memory consumption.

In contrast, asynchronous processing reduces the overhead from context switching because it doesn’t rely on threads. However, if a heavy task is running, other tasks may have to wait. As such, it is suitable for IO-bound operations like API requests.

(For tasks that are computationally intensive or require precise timing, multiprocessing is often more effective. Unlike multithreading, multiprocessing allows multiple tasks to run simultaneously.)

For example, when using the OpenAI Realtime API to receive audio from a microphone in real-time and send the audio data to the API, you can use a combination of multithreading and asynchronous processing:

import asyncio
import threading
import queue
import pyaudio
import websockets

# Use a queue to share data between threads
audio_queue = queue.Queue()

# Thread to capture audio using PyAudio
def audio_stream():
    p = pyaudio.PyAudio()
    stream = p.open(format=pyaudio.paInt16,
                    channels=1,
                    rate=44100,
                    input=True,
                    frames_per_buffer=1024)

    print("Start recording...")
    while True:
        data = stream.read(1024)
        audio_queue.put(data)

# Asynchronous function to send audio data via WebSocket
async def send_audio():
    uri = "ws://localhost:8765"
    async with websockets.connect(uri) as websocket:
        while True:
            # Get audio data from the queue
            data = audio_queue.get()
            if data is None:
                break
            await websocket.send(data)
            print("Sent audio data")

# Start the audio capture thread and run the asynchronous task
def main():
    audio_thread = threading.Thread(target=audio_stream)
    audio_thread.start()

    # Run the WebSocket sending task
    asyncio.run(send_audio())

if __name__ == "__main__":
    main()
Enter fullscreen mode Exit fullscreen mode

The audio capture process is a blocking operation, so it is executed in a separate thread using threading. In contrast, sending the audio data, which involves IO-bound operations like interacting with an API, is done using asynchronous processing. (Note: PyAudio can also be run non-blocking using callbacks. )

Conclusion

In this article, we introduced WebSocket and asynchronous processing.

I found these concepts particularly confusing while working with the OpenAI Realtime API, so I put this together as a personal note. If you find any errors or have any feedback, I would appreciate your input.

Thank you for reading until the end.

multithreading Article's
30 articles in total
Favicon
Python 3.13: The Gateway to High-Performance Multithreading Without GIL
Favicon
# Boost Your Python Tasks with `ThreadPoolExecutor`
Favicon
ReentrantReadWriteLock
Favicon
ReentrantLock in Java
Favicon
Synchronizing Threads with Semaphores: Practicing Concurrency in Java - LeetCode Problem 1115, "Print FooBar Alternately"
Favicon
Effective Ways to Use Locks in Kotlin
Favicon
Python Multithreading and Multiprocessing
Favicon
Introducing Robogator for PS and C#
Favicon
Multithreading Concepts Part 3 : Deadlock
Favicon
Multithreading Concepts Part 2 : Starvation
Favicon
Parallelism, Asynchronization, Multi-threading, & Multi-processing
Favicon
Using WebSocket with Python
Favicon
Power of Java Virtual Threads: A Deep Dive into Scalable Concurrency
Favicon
GIL "removal" for Python true multi threading
Favicon
Optimizing Your Development Machine: How Many Cores and Threads Do You Need for Programming?
Favicon
Multithreading Concepts Part 1: Atomicity and Immutability
Favicon
The Benefits of Having More Threads than Cores: Unlocking the Power of Multi-threading in Modern Computing
Favicon
Mastering Java Collections with Multithreading: Best Practices and Practical Examples
Favicon
Understanding Multithreading: Inner Workings and Key Concepts
Favicon
Handling Concurrency in C#: A Guide to Multithreading and Parallelism
Favicon
MultiThreading vs MultiProcessing
Favicon
Achieving multi-threading by creating threads manually in Swift
Favicon
Multithreading in Java : A Deep Dive
Favicon
Understanding std::unique_lock and std::shared_lock in C++
Favicon
Swift Concurrency
Favicon
Mastering Multithreading in C Programming: A Deep Dive with In-Depth Explanations and Advanced Concepts
Favicon
Understanding Multithreading in Python
Favicon
Introduction to Monitor Class in C#
Favicon
Deep Dive Into Race Condition Problem inΒ .NET
Favicon
Goroutines: Solving the problem of efficient multithreading

Featured ones: