Logo

dev-resources.site

for different kinds of informations.

Mysql 101 for Mongoose developer.

Published at
12/22/2024
Categories
mysql
database
xfory
mongoose
Author
thekbbohara
Categories
4 categories in total
mysql
open
database
open
xfory
open
mongoose
open
Author
11 person written this
thekbbohara
open
Mysql 101 for Mongoose developer.

Introduction

  • I don't care.
  • MySQL is a relational database management system (RDBMS). It is an open-source, multi-user, multi-threaded database system that allows for storing and managing structured data in tables. It uses the Structured Query Language (SQL) to manage and manipulate data.

Key Features of MySQL:

  • Open Source
  • Cross-Platform
  • Relational Database: MySQL is based on a relational database model, which stores data in tables (also known as relations).
  • High Performance: It is optimized for speed and can handle a large amount of data efficiently.
  • ACID Compliant: MySQL supports the ACID (Atomicity, Consistency, Isolation, Durability) properties, ensuring that database transactions are processed reliably.
    • Atomicity ensures that a transaction is treated as a single, indivisible unit. Either all of the operations within a transaction are completed successfully, or none of them are applied. In other words, a transaction is atomic: it is "all or nothing."
    • Consistency ensures that a transaction takes the database from one valid state to another valid state. After a transaction, all data must be in a consistent state, adhering to all defined rules, constraints, and relationships.
    • Isolation ensures that transactions are executed in isolation from one another, even if they occur concurrently. Each transaction should be executed as if it is the only transaction being processed, preventing interference from other transactions.
    • Durability ensures that once a transaction is committed, it is permanent, even in the case of system failures like power outages or crashes. The changes made by the transaction are saved to disk and will survive any subsequent failures.
  • Multi-User Access: MySQL allows multiple users to access the database simultaneously without affecting performance.

SQL Keywords

CREATE

  1. CREATE DATABASE
    • The CREATE DATABASE command is used to create a new database. In Mongoose, you don't need to explicitly create a database; it is automatically created when you connect to the database.
// DB is created if it doesn't exist
mongoose.connect('mongodb://localhost/my_database');
Enter fullscreen mode Exit fullscreen mode
CREATE DATABASE my_database;
Enter fullscreen mode Exit fullscreen mode
  1. USE DATABASE
    • The USE DB_NAME is used to select the database to use. In Mongoose, this is handled by the connection string.
mongoose.connect('mongodb://localhost/my_database');
Enter fullscreen mode Exit fullscreen mode
USE my_database;
Enter fullscreen mode Exit fullscreen mode
  1. CREATE TABLE
    • The CREATE TABLE command is used to create a new table in the database. In Mongoose, this is similar to creating a new collection.
mongoose.model('User', UserSchema);
Enter fullscreen mode Exit fullscreen mode
CREATE TABLE Users (
    id INT AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(100) NOT NULL,
    email VARCHAR(100) NOT NULL UNIQUE
);
Enter fullscreen mode Exit fullscreen mode
  1. CREATE INDEX
    • The CREATE INDEX command is used to create an index on a table to improve query performance. In MongoDB, this is the same.
UserSchema.index({ email: 1 }); // Unnamed Index
UserSchema.index({ email: 1 }, { name: 'idx_email' }); // Named Index
Enter fullscreen mode Exit fullscreen mode
-- Syntax: CREATE INDEX index_name ON table_name (column_name);
CREATE INDEX idx_email ON Users (email); -- Named Index
CREATE INDEX ON Users (email); -- Unnamed Index
Enter fullscreen mode Exit fullscreen mode

DESCRIBE

  • Used in SQL to view the structure of a table (its columns, data types, constraints, etc.). Mongoose Example: In MongoDB, there isn't a direct equivalent to DESCRIBE. However, you can inspect a schema programmatically.
console.log(UserSchema.paths);
// Outputs details about the schema fields and types
Enter fullscreen mode Exit fullscreen mode
DESCRIBE Users;
Enter fullscreen mode Exit fullscreen mode

INSERT

  • The INSERT INTO command is used to insert new rows in a table. In mongoose you would insert a new document into a collection/(Model).
// In mongoose its equivalent to .save() or .create();
const newUser = new User({ name: 'John Doe', email: '[email protected]' });
newUser.save()
Enter fullscreen mode Exit fullscreen mode
INSERT INTO Users (name, email)
VALUES ('John Doe', '[email protected]');
Enter fullscreen mode Exit fullscreen mode

SELECT

  • The SELECT statement in SQL is used to retrieve data from a database. In Mongoose, this is equivalent to using the .find() method to query a collection.
const users = await User.find(); // Fetches all users
const { name, email } = await User.findById(1); // Fetches user with id = 1
Enter fullscreen mode Exit fullscreen mode
SELECT * FROM Users; -- all users
SELECT name, email FROM Users WHERE id = 1; -- user of id 1
Enter fullscreen mode Exit fullscreen mode

UPDATE

  • The UPDATE statement is used to modify the existing records in a table. In mongoose you use find and update or .update()
// update all user of name kb
const query = { name: "kb" };
User.update(query, { name: "thekbbohara" })
Enter fullscreen mode Exit fullscreen mode
-- update all user of name kb
UPDATE Users
SET name = "thekbbohara", email = "[email protected]"
WHERE name = "kb";
Enter fullscreen mode Exit fullscreen mode

DELETE

  • The DELETE statement is used to delete existing records in a table. In mongoose we'd use deleteOne, deleteMany or find and delete.
User.deleteOne({ _id: 1 })
// All users whose name is notKb will be deleted.
User.deleteMany({ name: "notKb" })
Enter fullscreen mode Exit fullscreen mode
DELETE FROM Users WHERE id = 1;
DELETE FROM Users WHERE name = "notKb"
-- All users whose name is notKb will be deleted.
Enter fullscreen mode Exit fullscreen mode

ALTER

  • The ALTER TABLE statement in SQL is used to modify the structure of an existing table (add column, drop column and modify column). In Mongoose, the equivalent operation would be modifying the schema to include the new field and then handling updates to existing documents if necessary.
// Update the UserSchema to add the 'age' field
const UserSchema = new mongoose.Schema({
    name: String,
    email: String,
    age: Number, // New field
});
Enter fullscreen mode Exit fullscreen mode
-- Adds an 'age' column to the Users table
ALTER TABLE Users ADD age INT;

-- Delete 'Email' column from Users table
ALTER TABLE Users DROP COLUMN email;

-- Makes 'id' column unsigned and auto-incrementing
ALTER TABLE Users MODIFY COLUMN id INT UNSIGNED AUTO_INCREMENT;
Enter fullscreen mode Exit fullscreen mode

JOIN

  • A JOIN clause is used to combine rows from two or more tables, based on a related column between them. In MongoDB, joins are not natively supported like in relational databases. Instead, you typically use aggregation pipelines like $lookup for similar functionality.
// MongoDB Example: Using $lookup for a JOIN-like operation
db.orders.aggregate([
    {
        $lookup: {
            from: "users",         // Target collection to join with
            localField: "user_id", // Field in 'orders'
            foreignField: "_id",   // Field in 'users'
            as: "userDetails"      // Alias for joined data
        }
    }
]);
Enter fullscreen mode Exit fullscreen mode

INNER JOIN

  • The INNER JOIN keyword selects records that have matching values in both tables.
-- SQL Example: INNER JOIN
SELECT Orders.order_id, Users.name
FROM Orders
INNER JOIN Users
ON Orders.user_id = Users.id;
Enter fullscreen mode Exit fullscreen mode

LEFT JOIN

  • The LEFT JOIN keyword returns all records from the left table (table1), and the matching records (if any) from the right table (table2).
-- SQL Example: LEFT JOIN
SELECT Orders.order_id, Users.name
FROM Orders
LEFT JOIN Users
ON Orders.user_id = Users.id;
Enter fullscreen mode Exit fullscreen mode

RIGHT JOIN

  • The RIGHT JOIN keyword returns all records from the right table (table2), and the matching records (if any) from the left table (table1).
-- SQL Example: RIGHT JOIN
SELECT Orders.order_id, Users.name
FROM Orders
RIGHT JOIN Users
ON Orders.user_id = Users.id;
Enter fullscreen mode Exit fullscreen mode

CROSS JOIN

  • The CROSS JOIN keyword returns all records from both tables (table1 and table2).
-- SQL Example: CROSS JOIN
SELECT Orders.order_id, Users.name
FROM Orders
CROSS JOIN Users
Enter fullscreen mode Exit fullscreen mode

DATATYPES

In MySQL there are three main data types: string, numeric, and date and time. But in MongoDB, there are a variety of data types, but they differ from those in MySQL. MongoDB uses BSON (Binary JSON) to store data, which supports a rich set of data types. Here's a comparison of common data types in MySQL and MongoDB:

String Data Types

MySQL MongoDB (BSON) Notes
CHAR, VARCHAR String Both store textual data. MongoDB's String is analogous to VARCHAR.
TEXT, TINYTEXT, etc. String No separate TEXT type in MongoDB; all textual data is stored as String.

Numeric Data Types

MySQL MongoDB (BSON) Notes
INT, SMALLINT, etc. NumberInt Represents 32-bit integers.
BIGINT NumberLong Represents 64-bit integers.
FLOAT, DOUBLE NumberDouble Represents floating-point numbers.
DECIMAL, NUMERIC String or custom MongoDB doesn't have an exact equivalent; use String for precision.

Date and Time Data Types

MySQL MongoDB (BSON) Notes
DATE Date Both store date-only values.
DATETIME, TIMESTAMP Date MongoDB stores both date and time as a Date object.
TIME String or custom MongoDB does not have a direct TIME type; store as String if needed.
YEAR String or Int Represented using String or NumberInt.

Boolean Data Types

MySQL MongoDB (BSON) Notes
BOOLEAN, TINYINT(1) Boolean Both store true/false values.

Binary Data Types

MySQL MongoDB (BSON) Notes
BLOB, TINYBLOB, etc. BinData MongoDB's BinData is used for storing binary data like files.

JSON/Array Data Types

MySQL MongoDB (BSON) Notes
JSON Object MongoDB natively stores JSON-like documents as Object.
N/A Array MongoDB has a native Array type for storing lists of values.

Other Data Types

MySQL MongoDB (BSON) Notes
ENUM String or custom Use a String field with validation for enumerated values.
SET Array Use an Array to represent sets of values.
N/A ObjectId Unique identifier type in MongoDB, typically used as a primary key.
N/A Decimal128 Used for high-precision decimal numbers in MongoDB.

PRIMARY KEY

  • Ensures that each row in a table has a unique identifier.
const UserSchema = new mongoose.Schema({
    _id: { type: mongoose.Schema.Types.ObjectId, auto: true }, // Auto-generated unique ID (default primary key in MongoDB)
    name: { type: String, required: true }
});
const User = mongoose.model('User', UserSchema);
Enter fullscreen mode Exit fullscreen mode
CREATE TABLE Users (
    id INT AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(100) NOT NULL
);
Enter fullscreen mode Exit fullscreen mode

FOREIGN KEY

  • Ensures a column's values correspond to values in another table.
const PostSchema = new mongoose.Schema({
    title: { type: String, required: true },
    content: { type: String },
    userId: { type: mongoose.Schema.Types.ObjectId, ref: 'User' } // Reference to the User model
});

const User = mongoose.model('User', UserSchema);
const Post = mongoose.model('Post', PostSchema);
Enter fullscreen mode Exit fullscreen mode
CREATE TABLE Posts (
    id INT AUTO_INCREMENT PRIMARY KEY,
    title VARCHAR(100) NOT NULL,
    content TEXT,
    user_id INT,
    FOREIGN KEY (user_id) REFERENCES Users(id)
);
Enter fullscreen mode Exit fullscreen mode

Data Integrity and Constraints

  1. NOT NULL: Ensures that a column cannot have NULL values.
const UserSchema = new mongoose.Schema({
    name: { type: String, required: true } // Ensures name cannot be null
});
const User = mongoose.model('User', UserSchema);
Enter fullscreen mode Exit fullscreen mode
CREATE TABLE Users (
    id INT AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(100) NOT NULL
);
Enter fullscreen mode Exit fullscreen mode
  1. UNIQUE: Ensures that all values in a column are unique.
const UserSchema = new mongoose.Schema({
    email: { type: String, unique: true } // Ensures email values are unique
});
const User = mongoose.model('User', UserSchema);
Enter fullscreen mode Exit fullscreen mode
CREATE TABLE Users (
    id INT AUTO_INCREMENT PRIMARY KEY,
    email VARCHAR(100) UNIQUE
);
Enter fullscreen mode Exit fullscreen mode
  1. DEFAULT: Assigns a default value to a column if no value is provided.
const UserSchema = new mongoose.Schema({
    status: { type: String, default: 'active' } // Default value for status
});
const User = mongoose.model('User', UserSchema);
Enter fullscreen mode Exit fullscreen mode
CREATE TABLE Users (
    id INT AUTO_INCREMENT PRIMARY KEY,
    status VARCHAR(20) DEFAULT 'active'
);
Enter fullscreen mode Exit fullscreen mode
  1. CHECK (MySQL 8.0+): Ensures that the values in a column satisfy a given condition.
const UserSchema = new mongoose.Schema({
    age: { type: Number, min: 18 } // Ensures age is >= 18
});
const User = mongoose.model('User', UserSchema);
Enter fullscreen mode Exit fullscreen mode
CREATE TABLE Users (
    id INT AUTO_INCREMENT PRIMARY KEY,
    age INT CHECK (age >= 18)
);
Enter fullscreen mode Exit fullscreen mode
  1. AUTO_INCREMENT: Automatically generates a unique value for a column, often used for primary keys.
const UserSchema = new mongoose.Schema({
    _id: { type: mongoose.Schema.Types.ObjectId, auto: true }, // Auto-generated unique ID
    name: String
});
const User = mongoose.model('User', UserSchema);
Enter fullscreen mode Exit fullscreen mode
CREATE TABLE Users (
    id INT AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(100)
);
Enter fullscreen mode Exit fullscreen mode

That's all. You are good to go feel free to leave your feedback and you can get in touch with me here: thekbbohara

OH, by the way how do we setup Mysql.
I recommend using docker:

docker run --name mysql-server \
  -e MYSQL_ROOT_PASSWORD=yourpassword \
  -e MYSQL_DATABASE=nextjsdb \
  -p 3306:3306 \
  mysql:latest
Enter fullscreen mode Exit fullscreen mode
docker exec -it mysql-server bash
Enter fullscreen mode Exit fullscreen mode
mongoose Article's
30 articles in total
Favicon
Crudify: Automate Your Mongoose CRUD Operations in NestJS
Favicon
6 Steps to Set Up MongoDB Atlas for Node.js Applications
Favicon
Mysql 101 for Mongoose developer.
Favicon
Tutorial de Instalação: Express com MongoDB e Mongoose
Favicon
Today’s new knowledge #6(Mongoose)
Favicon
Today’s new knowledge #10 (Building a Flexible Query Builder for MongoDB with Mongoose)
Favicon
mongoose connect to express
Favicon
I Fumbled on a Next.js MongoDB Error and Learned the Key Differences Between Mongoose and MongoClient
Favicon
Setup Eslint Prettier in a TypeScript project with mongoose ODM
Favicon
Bootcamping 01: An Unexpected Behavior of Mongoose
Favicon
Common Myths About Mongoose
Favicon
5 Quick And Easy MongoDB Optimizations (part 1)
Favicon
Mongoose Interview Questions
Favicon
MongoDB vs. Mongoose: Understanding Their Roles and Differences
Favicon
We finally have a fullstack framework for MongoDB
Favicon
Mongoose
Favicon
💬 Building a Real-time Chat Feature for Virtual Gift Store Using Socket.IO with MERN Stack 🚀
Favicon
The Power of exec() in Mongoose: Unlocking Better Query Execution
Favicon
Enhancing Mongoose Reference Handling in Node.js
Favicon
Mongoose Documentation
Favicon
How to Connect MongoDB with Node.js: A Comprehensive Guide
Favicon
Updating Non-Primitive Data in an Array Using Transactions and Rollbacks
Favicon
Method Chaining in Mongoose: A Brief Overview
Favicon
Understanding Transactions and Rollbacks in MongoDB
Favicon
Understanding Populating Referencing Fields in Mongoose
Favicon
How to Use Bcrypt for Password Hashing in Node.js
Favicon
Getting Started with Mongoose
Favicon
Running Unit Tests with MongoDB in a Node.js Express Application using Jest
Favicon
Setting up MongoDB using Mongoose in Node.js
Favicon
I built an open-source schema visualisation tool for mongoose

Featured ones: