dev-resources.site
for different kinds of informations.
heaviside and Identity in PyTorch
Published at
8/16/2024
Categories
python
pytorch
heaviside
identity
Author
hyperkai
Author
8 person written this
hyperkai
open
*Memos:
- My post explains Step function, Identity and ReLU.
- My post explains ReLU() and LeakyReLU().
- My post explains PReLU() and ELU().
- My post explains SELU() and CELU().
- My post explains GELU() and Mish().
- My post explains SiLU() and Softplus().
- My post explains Tanh() and Softsign().
- My post explains Sigmoid() and Softmax().
heaviside() can get the 0D or more D tensor of the zero or more values computed by Heaviside step function from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
heaviside()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orbool
). - The 2nd argument with
torch
or the 1st argument with a tensor isvalues
(Required-Type:tensor
ofint
,float
orbool
).
import torch
from torch import nn
my_tensor = torch.tensor([8, -3, 0, 1, 5, -2, -1, 4])
torch.heaviside(input=my_tensor,
values=torch.tensor(0))
my_tensor.heaviside(values=torch.tensor(0))
# tensor([1, 0, 0, 1, 1, 0, 0, 1])
torch.heaviside(input=my_tensor,
values=torch.tensor([0, 1, 2, 3, 4, 5, 6, 7]))
# tensor([1, 0, 2, 1, 1, 0, 0, 1])
my_tensor = torch.tensor([[8, -3, 0, 1],
[5, 0, -1, 4]])
torch.heaviside(input=my_tensor, values=torch.tensor(0))
# tensor([[1, 0, 0, 1],
# [1, 0, 0, 1]])
torch.heaviside(input=my_tensor,
values=torch.tensor([[0, 1, 2, 3],
[4, 5, 6, 7]]))
# tensor([[1, 0, 2, 1],
# [1, 5, 0, 1]])
my_tensor = torch.tensor([[[8, -3], [0, 1]],
[[5, 0], [-1, 4]]])
torch.heaviside(input=my_tensor, values=torch.tensor(0))
# tensor([[[1, 0], [0, 1]],
# [[1, 0], [0, 1]]])
torch.heaviside(input=my_tensor,
values=torch.tensor([[[0, 1], [2, 3]],
[[4, 5], [6, 7]]]))
# tensor([[[1, 0], [2, 1]],
# [[1, 5], [0, 1]]])
my_tensor = torch.tensor([[[8., -3.], [0., 1.]],
[[5., 0.], [-1., 4.]]])
torch.heaviside(input=my_tensor,
values=torch.tensor([[[0., 1.], [2., 3.]],
[[4., 5.], [6., 7.]]]))
# tensor([[[1., 0.], [2., 1.]],
# [[1., 5.], [0., 1.]]])
my_tensor = torch.tensor([[[True, False], [True, False]],
[[False, True], [False, True]]])
torch.heaviside(input=my_tensor,
values=torch.tensor([[[True, False], [True, False]],
[[False, True], [False, True]]]))
# tensor([[[True, False], [True, False]],
# [[False, True], [False, True]]])
Identity() can just get the same tensor as the input tensor which is the 0D or more D tensor of zero or more elements as shown below:
*Memos:
- For initialization, you can set 0 or more arguments but there is no influence.
- The 1st argument is
input
(Required-Type:tensor
ofint
orfloat
).
import torch
from torch import nn
my_tensor = torch.tensor([8, -3, 0, 1, 5, -2, -1, 4])
identity = nn.Identity()
identity(input=my_tensor)
# tensor([8, -3, 0, 1, 5, -2, -1, 4])
identity
# Identity()
identity = nn.Identity(num1=3, num2=5)
identity(input=my_tensor)
# tensor([8, -3, 0, 1, 5, -2, -1, 4])
my_tensor = torch.tensor([[8, -3, 0, 1],
[5, -2, -1, 4]])
identity = nn.Identity()
identity(input=my_tensor)
# tensor([[8, -3, 0, 1],
# [5, -2, -1, 4]])
my_tensor = torch.tensor([[[8, -3], [0, 1]],
[[5, -2], [-1, 4]]])
identity = nn.Identity()
identity(input=my_tensor)
# tensor([[[8, -3], [0, 1]],
# [[5, -2], [-1, 4]]])
my_tensor = torch.tensor([[[8., -3.], [0., 1.]],
[[5., -2.], [-1., 4.]]])
identity = nn.Identity()
identity(input=my_tensor)
# tensor([[[8., -3.], [0., 1.]],
# [[5., -2.], [-1., 4.]]])
identity Article's
30 articles in total
Deploying and Configuring a Hybrid Identity Lab Using Bicep - Part 1: Active Directory Setup and Sync
read article
It’s cybersecurity’s kryptonite: Why are you still holding it?
read article
How to secure minimal api microservices with asp.net core identity
read article
How to verify NIN for Nigerians on the ecitizen platform.
read article
Simplified Configuration of SSO Profiles in AWS CLI Using SSO Sessions
read article
Google identity Platform
read article
Why Broken Links Are Costing You Brand Deals (And How to Fix It)
read article
How To Get There: Bridging The Technology Gap Preventing You From Adopting A Secrets-free Machine Identity Framework
read article
5 go-to-market lessons I learned from driving a developer-led growth product
read article
Revolutionizing Identity Resolution with Machine Learning: A Technical Overview
read article
Social Media Security: How to Protect Your Online Identity
read article
The Future of Web: How Web5 Transforms Identity and Data OwnerShip
read article
Private Self-Hosted OIDC AWS Authentication
read article
Opaque token vs JWT
read article
Implementing ASP.NET Identity for a Multi-Tenant Application: Best Practices
read article
Color palette in branding: How Logto generate a custom color scheme for your brand
read article
Concepts of a Ticket in ASP.NET Identity
read article
Understanding Single Sign-On (SSO) and SAML: Simplified
read article
When should I use JWTs?
read article
Bring your own sign-in UI to Logto Cloud
read article
Create a remark plugin to extract MDX reading time
read article
Everything you need to know about Base64
read article
How does the browser process the URL input in the address bar?
read article
Deep Linking AWS Console with all your AWS IAM Identity Center Roles
read article
Are You Prepared for the Next Cyber Attack? - IDArmor
read article
heaviside and Identity in PyTorch
currently reading
Is magic link sign-in dying? A closer look at its declining popularity
read article
Crafting Your Developer Identity: A Blueprint for 2024 🌟
read article
Use React.lazy with confidence: A safe way to load components when iterating fast
read article
Personal access tokens, machine-to-machine authentication, and API Keys definition and their real-world scenarios
read article
Featured ones: