Logo

dev-resources.site

for different kinds of informations.

"Advancing Galaxy Analysis: AI-Powered Detection and Segmentation of Edge-On Galaxies"

Published at
6/28/2024
Categories
universe
ia
Author
karla_contreras_1904c68c4
Categories
2 categories in total
universe
open
ia
open
Author
25 person written this
karla_contreras_1904c68c4
open
"Advancing Galaxy Analysis: AI-Powered Detection and Segmentation of Edge-On Galaxies"

Image description

  • Discusses the development of a deep learning algorithm to detect and segment edge-on galaxies in astronomical images. Edge-on galaxies are of great interest in galactic astrophysics due to their unique orientation, which allows for the study of various galactic phenomena.

  • The process begins with the selection of a dataset of edge-on spiral galaxies from the Galaxy Zoo project and the corresponding images from the Sloan Digital Sky Survey (SDSS). Approximately 16,000 galaxies were selected and used to train the YOLOv5 algorithm for detection purposes. To isolate galaxies from their backgrounds, the SCSS-Net neural network was used to generate segmentation masks. The algorithm detected 8,000 edge-on galaxies, for which a catalog including their parameters obtained from the SDSS database was compiled.

  • The algorithm is structured into three main steps:

Detection: Using the YOLOv5 model, detection boxes of edge-on galaxies are obtained.

Segmentation: Extraction of cutouts of detected galaxies using a U-Net-based architecture.

Post-processing: Generation of segmentation masks and extraction of galaxy parameters for further analysis.

  • Initial data were selected from Galaxy Zoo 2, following specific criteria to ensure that the selected galaxies were spiral and edge-on. The selected images were uploaded to the Zooniverse platform for data annotation by volunteers, which allowed for accurate and verifiable annotations. This collaboration enabled the preparation of the data for the development of the machine learning algorithm.

  • The paper highlights that most detected galaxies have redshifts between 0.02 and 0.10, with low b/a values (ratio of minor to major axes), and are mostly red, which is consistent with the expected characteristics of edge-on galaxies.

  • The methodology demonstrates how combining detection and segmentation algorithms can automate the identification and preparation of galaxies for scientific studies. The integrated approach from raw data to usable scientific results is a significant innovation in galactic astrophysics.

  • Concludes that the algorithm is not only capable of detecting and segmenting edge-on galaxies with high precision but can also be applied to data from future astronomical surveys, extending its utility and application in future galactic studies.

  • This work represents a significant advance in the application of artificial intelligence techniques for analyzing large volumes of astronomical data, facilitating the identification and study of edge-on galaxies, which are crucial for better understanding the structure and dynamics of galaxies.

Image description

Nota: Text generated with the help of AI.

ia Article's
30 articles in total
Favicon
Figma x IA : La révolution des interfaces est en marche
Favicon
Langchain — RAG — Retrieval Augmented Generation
Favicon
First look in Chrome Built-in AI [Early Preview] with Gemini Nano
Favicon
El futuro del desarrollo de software: por qué los creadores de productos tomarán el control
Favicon
Evaluación y Métricas en la Evaluación de Modelos de IA
Favicon
Redes Neuronales Espigadas (Spiking Neural Networks) y su Implementación en Hardware Neuromórfico
Favicon
Optimización Multi-Objetivo en Aprendizaje Automático
Favicon
Podcast #9 IA pas que la Data - Gen AI dans le secteur de la banque
Favicon
Você sabe o que seria um modelo de IA?
Favicon
Os bons hábitos do uso das IAs na bolha DEV
Favicon
Por que Python é amplamente utilizado em projetos de Inteligência Artificial?
Favicon
Integration Digest: May 2024
Favicon
Modelos Generativos y su Aplicación en Datos Sintéticos
Favicon
"Advancing Galaxy Analysis: AI-Powered Detection and Segmentation of Edge-On Galaxies"
Favicon
Understanding Chain-of-Thought Prompting: A Revolution in Artificial Intelligence
Favicon
Técnicas de Auto-Supervisión en Aprendizaje Profundo
Favicon
Aprendizaje Federado y Privacidad Diferencial
Favicon
Seguridad y Robustez en Modelos de Aprendizaje Automático
Favicon
Create Your Portfolio in 3 steps with the Frontend AI Tool
Favicon
IA Explicable: Algoritmos y Métodos para Interpretar Modelos de Caja Negra
Favicon
Modelos de Lenguaje Grandes y su Optimización en Recursos Computacionales Limitados
Favicon
Aprendizaje por Refuerzo Profundo en Ambientes No Estacionarios
Favicon
Como fui aprovada em Duas Iniciações Cientificas: Uma Com Bolsa e Outra Voluntária
Favicon
Resum tècnic de l'"Artificial Intelligence Risk Management Framework (AI RMF 1.0)
Favicon
Construyendo IA responsable con AWS
Favicon
La Simbiosi entre IA i Ciberseguretat: Cap a una Nova Era de CiberProtecció dels "AI Brains"
Favicon
Estrategia Multicloud y MultiServicios en Salud: Potenciando la IA con Microsoft Fabric y Azure AI Health Bot
Favicon
La estructura de la era de la IA
Favicon
The Role of HPC in Meta Llama 3 Development
Favicon
Oficial! Gemini Google AI Dart/Flutter SDK— Integrando Flutter com o GEMINI

Featured ones: