Logo

dev-resources.site

for different kinds of informations.

Converting Plotly charts into images in parallel

Published at
1/2/2025
Categories
python
plotly
parallelization
graphs
Author
kummerer94
Author
10 person written this
kummerer94
open
Converting Plotly charts into images in parallel

We use Plotly charts extensively in the company I work for. They make it easy to create interactive graphics that look good. The Python experience via the Plotly Express library is great and the bar to get started is low.

We have two main use-cases for Plotly graphs:

  • For our interactive dashboards with Plotly Dash. The integration of Plotly charts into Dash is obviously great.
  • For our PDF reports where we convert the chart into an image before rendering the PDF.

For a typical PDF report, we use 5-20 figures to show the evolution of a particular metric over time, the distribution of some value over a number of categories, or the comparison of different categories next to each other.

To create our PDF reports, we use a combination of Weasyprint, Jinja, and Plotly charts. To render a report as a PDF, we first have to render all graphs as images.

Rendering graphs with Kaleido

To do so, we use the great Kaleido package. It uses a Chrome browser to render the graph and save it as an image. The API is straight forward to use.

from kaleido.scopes.plotly import PlotlyScope

scope = PlotlyScope()
img_bytes = scope.transform(
    figure=figure, format="png", width=1000, height=1000, scale=4,
)
Enter fullscreen mode Exit fullscreen mode

This renders the figure in figure as an image with 1000px height and width and a rendering scale of 4 (i.e. the image actually has dimensions 4000px x 4000px). The higher the scale, the more DPI the final image has, the better it looks, and the larger the final PDF is.

Rendering a lot of graphs

Rendering graphs takes a little bit of time and if you render a lot of them (10-20), it will be a significant share of your program's runtime. To speed up our PDF rendering pipeline, we deployed the following solution.

Internally, Kaleido just outsources the problem of rendering the graph as an image to an included Chrome webbrowser. This means, for Python itself rendering this image is basically waiting for I/O.

To speed up this particular process and since we just wait for I/O, we can use multithreading.

Creating a random graph

Let's start by creating a random figure, like so:

import pandas as pd
import numpy as np
import plotly.graph_objects as go

def get_random_figure() -> go.Figure:
    n_bars = 50
    dates = pd.date_range(start="2021-01-01", end="2021-12-31", freq="M")

    figure = go.Figure()
    for i in range(n_bars):
        values = np.random.rand(len(dates))
        figure.add_trace(go.Bar(x=dates, y=values, name=f"Label {i+1}"))

    figure.update_layout(
        dict(
            barmode="group",
            legend=dict(orientation="h", yanchor="top", xanchor="left"),
        )
    )
    figure.update_layout(yaxis=dict(tickformat=".0%"), xaxis=dict(showgrid=False))
    return figure

Enter fullscreen mode Exit fullscreen mode

Now, turning a figure into an image can be done using the code from above:

from kaleido.scopes.plotly import PlotlyScope
import plotly.graph_objects as go

def figure_to_bytes(figure: go.Figure) -> bytes:
    scope = PlotlyScope()
    return scope.transform(figure=figure, format="png", width=1000, height=1000, scale=4)
Enter fullscreen mode Exit fullscreen mode

And finally we also define for later:

def transform_random_figure() -> bytes:
    return figure_to_bytes(get_random_figure())
Enter fullscreen mode Exit fullscreen mode

Running the image transformation in threads

You may or may not know that due to the GIL (global interpreter lock) in Python, only one thread can execute Python code at the same time. Since the transformation of the graph to an image is not Python code, we can make use of threads to start the transformation of a lot of graphs at the same time and then collect the results.

For that, we define a helper class:

from threading import Thread

# Make the join() method return the value returned by the target function.
class ThreadWithReturnValue(Thread):
    def __init__(self, group=None, target=None, name=None, args=(), kwargs={}, Verbose=None):
        Thread.__init__(self, group, target, name, args, kwargs)
        self._return = None

    def run(self):
        if self._target is not None:
            self._return = self._target(*self._args, **self._kwargs)

    def join(self, *args):
        Thread.join(self, *args)
        return self._return
Enter fullscreen mode Exit fullscreen mode

This class will help us retrieve the result of the transformation (i.e. the bytes of the image).

The next thing we have to do is follow the standard pattern for working with threads in Python:

  1. Start the threads you want to start with the start() method.
  2. Using the join() method to wait for the thread to return the result.

Our threads should each call transform_random_figure() and then return the bytes. We start 10 threads in this case.

n_threads = 10
threads = [ThreadWithReturnValue(target=transform_random_figure) for _ in range(n_threads)]
for thread in threads:
    thread.start()
Enter fullscreen mode Exit fullscreen mode

The start() method will also call the run() method of the thread that starts the actual logic (i.e. executes the given function, which in our case means transform_random_figure()).

To collect the results, we use the join() method of the threads and write the result into files.

results = [thread.join() for thread in threads]
for i, res in enumerate(results):
    with open(f"result{i}.png", "wb") as f:
        f.write(res)
Enter fullscreen mode Exit fullscreen mode

How it works

The main idea here is to, whenever we want to transform a graph into an image, we start a thread and this thread will wait for the graph to be finished in the background.

Once we put together the whole report, we call join() on all threads and retrieve the images for all graphs and then put them into the report.

This way, we can already generate the whole report without graphs and save time by not waiting for every graph on its own to be transformed.

Summary

In summary, if you want to transform multiple Plotly charts into images, use the multithreading module in the Python standard library to speed up your conversion process.

You can do so very easily just by moving the transform() call into a thread and then waiting for all threads to finish.

Appendix: The Code

import logging
from threading import Thread

import numpy as np
import pandas as pd
import plotly.graph_objects as go
from kaleido.scopes.plotly import PlotlyScope

logging.basicConfig(format="%(asctime)s %(message)s", level=logging.DEBUG)
logger = logging.getLogger()


def get_random_figure() -> go.Figure:
    n_bars = 50
    dates = pd.date_range(start="2021-01-01", end="2021-12-31", freq="M")
    figure = go.Figure()

    for i in range(n_bars):
        values = np.random.rand(len(dates))
        figure.add_trace(go.Bar(x=dates, y=values, name=f"Label {i+1}"))

    figure.update_layout(
        dict(
            barmode="group",
            legend=dict(orientation="h", yanchor="top", xanchor="left"),
        )
    )
    figure.update_layout(yaxis=dict(tickformat=".0%"), xaxis=dict(showgrid=False))
    return figure


def figure_to_bytes(figure: go.Figure) -> bytes:
    scope = PlotlyScope()
    logger.info("Transforming the graph %s.", id(figure))
    img_bytes = scope.transform(
        figure=figure,
        format="png",
        width=1000,
        height=1000,
        scale=4,
    )
    logger.info("Done transforming the graph %s.", id(figure))
    return img_bytes


def transform_random_figure() -> bytes:
    return figure_to_bytes(get_random_figure())


# Make the join() method return the value returned by the target function.
class ThreadWithReturnValue(Thread):

    def __init__(self, group=None, target=None, name=None, args=(), kwargs={}, Verbose=None):
        Thread.__init__(self, group, target, name, args, kwargs)
        self._return = None

    def run(self):
        if self._target is not None:
            self._return = self._target(*self._args, **self._kwargs)

    def join(self, *args):
        Thread.join(self, *args)
        return self._return


n_threads = 5
threads = [ThreadWithReturnValue(target=transform_random_figure) for _ in range(n_threads)]
for thread in threads:
    thread.start()

results = [thread.join() for thread in threads]
for i, res in enumerate(results):
    with open(f"result{i}.png", "wb") as f:
        f.write(res)
Enter fullscreen mode Exit fullscreen mode
graphs Article's
30 articles in total
Favicon
Converting Plotly charts into images in parallel
Favicon
TeeChart Charting Libraries use cases
Favicon
Graphs, Data Structures
Favicon
Navigating the Evolution of AI in Cybersecurity: Insights from Mastercard at #RiskX 2023
Favicon
Graph Coloring Problem: Cracking Complexity with Elegant Solutions
Favicon
Personal Knowledge Graphs in Relational Model
Favicon
Closing a chapter
Favicon
Grouping algorithm
Favicon
Priority Queue vs Set
Favicon
Algorithmic Alchemy: Exploiting Graph Theory in the Foreign Exchange
Favicon
Apache AGE: Unique Use Cases
Favicon
Efficient Representation of Relationships with Graph Databases
Favicon
Crafting Mazes with Graph Theory
Favicon
Embracing the Power of Graph Databases
Favicon
Exploring Graph Visualisation with Apache AGE: Unveiling Hidden Insights
Favicon
Introductory Concepts in Network Analysis
Favicon
AGE PG15/16 New updates
Favicon
Does your APP need Apache AGE?
Favicon
10 Reasons Why to use Apache AGE alongside PostgreSQL
Favicon
Apache AGE Complete Installation Guide - Part 3 and Last ( AGE )
Favicon
Apache AGE Complete Installation Guide - Part 2 ( PostgreSQL )
Favicon
Importing graph from files
Favicon
Introduction to Apache AGE: Exploring the Capabilities
Favicon
How to create and plot graphs in Python
Favicon
AWS Neptune for analysing event ticket sales between users - Part 1
Favicon
Apache AGE, Why you should use it
Favicon
Unleashing the Power of Data Analytics with Apache AGE: The Synergy of Graph Databases and Machine Learning - Part 1
Favicon
Just a super easy flowchart
Favicon
The Power of Graph Databases: Unlocking the Potential of Connected Data
Favicon
How to read a histogram?

Featured ones: