Logo

dev-resources.site

for different kinds of informations.

Schema Validation in Amazon DynamoDB

Published at
11/8/2024
Categories
dynamodb
aws
security
node
Author
iamsherif
Categories
4 categories in total
dynamodb
open
aws
open
security
open
node
open
Author
9 person written this
iamsherif
open
Schema Validation in Amazon DynamoDB

Introduction

Validating data in DynamoDB is crucial for maintaining data integrity, ensuring application reliability, and reducing errors. Unlike relational databases, DynamoDB does not enforce strict schema constraints, giving you the flexibility to store a variety of data formats. However, this flexibility means you must take responsibility for validating data before it is written to the database. In this article, we’ll go through an approach to validate data in DynamoDB using AWS Lambda.

Why Data Validation Matters in DynamoDB

Without strict schema enforcement, data in DynamoDB can end up in inconsistent or incorrect formats. If validation is neglected, problems may arise, such as:

  • Application Errors: Missing or incorrectly formatted data can lead to errors and application crashes.
  • Data Inconsistencies: Querying inconsistent data formats can complicate analytics and reporting.
  • Scalability Issues: Unvalidated data may lead to inefficient data structure and increased storage costs.

To avoid these issues, validating data before saving it to DynamoDB is essential.

How to validate schema using AWS Lambda

In serverless architectures, AWS Lambda is a common approach for server-side validation. By implementing validation within Lambda functions, you can control data before it reaches DynamoDB.

Here’s how you can incorporate validation in a Lambda function with Node.js:

const Joi = require('joi');

// The schema definition using Joi
const tableSchema = Joi.object({
    id: Joi.string().required(),
    name: Joi.string().required(),
    email: Joi.string().pattern(new RegExp("^[\\w-\\.]+@([\\w-]+\\.)+[\\w-]{2,4}$")).required(),
    phone: Joi.string().optional()
})

const validateObject = async (data) => {
    try{
        const value = await tableSchema.validateAsync(data);
        return value;
    }catch(error){
        return {
            body: JSON.stringify({ message: "Invalid request body", error: err.message || err }),
        }
    }
}

module.exports.lambdaHandler = async (event, context) => {
  try{
    const body = event.body
    const result = await writeToDynamodbTable(body);
    return result;
    }
  }catch (err) {
    return {
        statusCode: 400,
        body: JSON.stringify({ message: "Invalid request body", error: err.message || err }),
    };
  }
}

const writeToDynamodbTable = async (data) => {
  try{
    const value = await validateObject(data)
    const params = {
        TableName: 'YourTableName',
        Item: {
          id: value.id,
          name: value.name,
          email: value.email,
          phone: value.phone
        },
        ConditionExpression: "attribute_not_exists(id)"
  };;
    const res = await dynamodbClient.send(new PutCommand(params));
    return res;
  }catch(error){
    throw error
  }
};

Enter fullscreen mode Exit fullscreen mode

In the code snippet above we:
1- Define the schema using Joi Schema
2- Validate our object in the validateObject function
3- Configure our params object
3- Send request to DynamoDB using AWS Lambda

SAMPLE ERROR:

If we send a mismatch object like this:


{
  "body": {
    "id": "value1",
    "name": "value2",
    "email": "[email protected]"
  }
}

Enter fullscreen mode Exit fullscreen mode

Note: phone is not included in the object but it is a required key in the schema we defined.
We will get an error like

{ statusCode: 400,
  body: { message: "Invalid request body",
          error: ""phone" is required"
        }
}
Enter fullscreen mode Exit fullscreen mode

Conclusion

Validating data in DynamoDB is a fundamental step to ensure data quality and avoid issues down the line. Whether you choose to validate data on the client, the server, or both, using a structured approach with reusable validation schemas will streamline the process. By following best practices, you can improve the reliability and performance of your DynamoDB-backed applications.

β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

Follow my social handles for more articles:
Click and follow on

dynamodb Article's
30 articles in total
Favicon
Efficient Batch Writing to DynamoDB with Python: A Step-by-Step Guide
Favicon
Advanced Single Table Design Patterns With DynamoDB
Favicon
DynamoDB GUI in local
Favicon
Stream Dynamo para RDS Mysql
Favicon
Alarme Dynamo Throttle Events - Discord
Favicon
What I Learned from the 'Amazon DynamoDB for Serverless Architectures' Course on AWS Skill Builder
Favicon
A Novel Pattern for Documenting DynamoDB Access Patterns
Favicon
Making dynamodb queries just a little bit easier.
Favicon
Replicate data from DynamoDB to Apache Iceberg tables using Glue Zero-ETL integration
Favicon
Deploying a Globally Accessible Web Application with Disaster Recovery
Favicon
Practical DynamoDB - Locking Reads
Favicon
Databases - Query Data with DynamoDB
Favicon
Database Management in the cloud (RDS, DynamoDB)
Favicon
Securing Customer Support with AWS Services and Slack Integration
Favicon
Help! I Think I Broke DynamoDB – A Tale of Three Wishes πŸ§žβ€β™‚οΈ
Favicon
Mastering DynamoDB in 2025: Building Scalable and Cost-Effective Applications
Favicon
Syncing Data in Near Real-Time: Integrate DynamoDB and OpenSearch
Favicon
DynamoDB and the Art of Knowing Your Limits πŸ’₯When Database Bites Back πŸ§›β€β™‚οΈ
Favicon
DynamoDB Transactions with AWS Step Functions
Favicon
Create an API to get data from your DynamoDB Database using CDK
Favicon
AWS Database - Part 2: DynamoDB
Favicon
Building event-driven workflows with DynamoDB Streams
Favicon
Setting up a REST API in Python for DynamoDB
Favicon
How to Create a (Nearly) Free Serverless Rate Limiter on AWS
Favicon
Query DynamoDB with SQL using Athena - Leveraging EventBridge Pipes and Firehose (2/2)
Favicon
Schema Validation in Amazon DynamoDB
Favicon
Use Cases for DynamoDB in Provisioned Mode vs. Auto Scaling: Advantages and Disadvantages
Favicon
Mastering DynamoDB: Batch Operations Explained
Favicon
Not only dynamoDb migration or seed scripting
Favicon
Query DynamoDB with SQL using Athena - Leveraging DynamoDB Exports to S3 (1/2)

Featured ones: