dev-resources.site
for different kinds of informations.
Install NVIDIA CUDA on Linux
Published at
4/7/2022
Categories
cuda
deeplearning
gpu
linux
Author
bybatkhuu
Author
9 person written this
bybatkhuu
open
Official pages
- CUDA: https://developer.nvidia.com/cuda-toolkit
- CUDA archive: https://developer.nvidia.com/cuda-toolkit-archive
- Install CUDA: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#runfile
- cuDNN: https://developer.nvidia.com/cudnn
- Install cuDNN: https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-tar
- TensorRT: https://developer.nvidia.com/tensorrt-getting-started
- Install TensorRT: https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-tar
Prerequisites
Check current Linux system specification
- Check NVIDIA GPU exists:
## Use lshw:
lshw -C display
# Only for Ubuntu/Debian:
sudo apt-get update --fix-missing -o Acquire::CompressionTypes::Order::=gz
sudo apt-get install -y pciutils mesa-utils
# Or use lspci:
lspci | grep -i vga && lspci | grep -i nvidia
# Or use glxinfo:
glxinfo | egrep "OpenGL vendor|OpenGL renderer"
- Check linux OS information:
## Check linux OS version and distro:
uname -a && cat /etc/*release
## Check kernel version:
uname -r
# Or:
hostnamectl
## Check GCC and make compiler version:
gcc --version && make -v
## Check glibc version:
ldd --version
Check CUDA version compatibility
-
[IMPORTANT] Search and check the latest stable NVIDIA driver version for your GPU model(s):
- NVIDIA driver downloads: https://www.nvidia.com/Download/Find.aspx?lang=en-us
-
[IMPORTANT] Check the compatibility of the NVIDIA driver version with CUDA versions:
- CUDA release note: https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
- CUDA compatibility PDF: https://docs.nvidia.com/pdf/CUDA_Compatibility.pdf
- CUDA compatibility: https://docs.nvidia.com/deploy/cuda-compatibility/#minor-version-compatibility
-
[IMPORTANT] Check system requirements for CUDA versions:
- CUDA latest version: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements
- CUDA older versions archive: https://developer.nvidia.com/cuda-toolkit-archive
-
[RECOMMENDED] Check the compute capability of your GPU model(s):
- GPU compute capability: https://developer.nvidia.com/cuda-gpus
- CUDA Wikipedia: https://en.wikipedia.org/wiki/CUDA
-
[RECOMMENDED] Check the cuDNN version with compute capability of your GPU model(s):
- cuDNN support matrix: https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html
-
[OPTIONAL] Check the compatibility of TensorRT versions with CUDA versions and cuDNN versions:
- TensorRT latest version: https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html
- TensorRT older versions archives: https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
-
[RECOMMENDED] Check compatible CUDA versions for required machine learning/deep learning frameworks/libraries you want to use:
- Tensorflow-gpu: https://www.tensorflow.org/install/source#gpu
- Pytorch: https://pytorch.org/get-started/previous-versions
- Etc...
Install NVIDIA GPU driver
- [REQUIRED] Install NVIDIA GPU Driver: https://github.com/bybatkhuu/wiki/blob/main/posts/manuals/installs/nvidia-driver-linux.md
Install CUDA toolkit
Download CUDA
- IMPORTANT! Download and use the .RUN file! It can prevent installing incompatible NVIDIA drivers and prevent overwriting the previous /usr/local/cuda (if you installed another CUDA already) symbolic link.
- IMPORTANT! Don't download or use the .DEB file! It will overwrite the current default CUDA (if you installed it already) directory (/usr/local/cuda) and also it will overwrite the already installed latest compatible NVIDIA driver version into the old or incompatible driver. Moreover, if you want to use a different version of CUDA, never install CUDA.DEB file!
- Search and download the required version of CUDA (cuda_***_linux.run) installer file from this link: https://developer.nvidia.com/cuda-toolkit-archive
- If you're using a command-line interface, just copy the download link from the NVIDIA website and use wget to download. For example:
mkdir -v ~/Downloads
cd ~/Downloads
# 1. (Skip this, if you've already downloaded) Download CUDA .run installer file by wget:
wget https://developer.download.nvidia.com/compute/cuda/[CUDA_VERSION]/local_installers/cuda_[CUDA_VERSION]_[DRIVER_VERSION]_linux.run
# For example:
wget https://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_450.51.06_linux.run
Install CUDA.run file
When installing CUDA.run, follow the below steps:
- Type 'accept' and ENTER.
- IMPORTANT! Uncheck and disable NVIDIA driver installation to prevent overwriting already installed latest compatible version of NVIDIA driver into an old or incompatible driver.
- IMPORTANT! Uncheck and disable CUDA symbolic link installation to prevent overwriting the current default CUDA (if you installed it already) directory (/usr/local/cuda).
- Choose install and press it!
# Change directory to cuda_***.run file downloaded directory. For example:
cd ~/Downloads
# 2. IMPORTANT! Install cuda_***.run file:
sudo sh cuda_[CUDA_VERSION]_[DRIVER_VERSION]_linux.run
# For example:
sudo sh cuda_11.0.3_450.51.06_linux.run
# 3. Remove downloaded file:
rm -vrf cuda_[CUDA_VERSION]_[DRIVER_VERSION]_linux.run
# For example:
rm -vrf cuda_11.0.3_450.51.06_linux.run
Post-installation
Edit the ~/.bashrc
file:
# 4. Add CUDA environment variables to current user .bashrc file:
# (It loads environment variables, whenever current user opens a new bash session/new terminal)
nano ~/.bashrc
and add the following lines into the ~/.bashrc
file (don't forget to change [CUDA_VERSION] into the installed version):
## CUDA ##
# Change to installed CUDA version:
# export CUDA_VERSION=[CUDA_VERSION]
export CUDA_VERSION=11.0
export CUDA_HOME="/usr/local/cuda-${CUDA_VERSION}"
export CUDA_PATH="${CUDA_HOME}"
export PATH="${CUDA_PATH}/bin:${PATH}"
export LIBRARY_PATH="${CUDA_PATH}/lib64:${LIBRARY_PATH}"
export LD_LIBRARY_PATH="${CUDA_PATH}/lib64:${LD_LIBRARY_PATH}"
export LD_LIBRARY_PATH="${CUDA_PATH}/extras/CUPTI/lib64:${LD_LIBRARY_PATH}"
export NVCC="${CUDA_PATH}/bin/nvcc"
export CFLAGS="-I${CUDA_PATH}/include ${CFLAGS}"
save changes and exit from the file editor.
# 5. Load .bashrc file to init environment variables into the current bash session:
source ~/.bashrc
# 6. Check CUDA compiler version:
nvcc -V
# Or:
cat ${CUDA_PATH}/version.txt
# Or:
cat ${CUDA_PATH}/version.json
[RECOMMENDED] Install cuDNN (For Deep Learning)
Download cuDNN
- IMPORTANT! Download and use .TGZ or .TAR.XZ file! You can install cuDNN into a custom directory, which means you can control which version of cuDNN you want to use and where to install it.
- IMPORTANT! Don't download and use .DEB file! It will overwrite the cuDNN library into the current default CUDA directory (/usr/local/cuda).
- Download cuDNN .TGZ or .TAR.XZ file from this link: https://developer.nvidia.com/rdp/cudnn-download
Install cuDNN .tgz or .tar.xz package files
# Change directory to cudnn_***.tgz or .tar.xz file downloaded directory. For example:
cd ~/Downloads
## Extract cuDNN .tgz or .tar.xz package file:
# New versions:
tar -xf cudnn-linux-x86_64-[CUDNN_VERSION]_cuda[CUDA_VERSION]-archive.tar.xz
# For example:
tar -xf cudnn-linux-x86_64-8.3.1.22_cuda11.5-archive.tar.xz
# Or older versions:
tar -xzf cudnn-[CUDA_VERSION]-linux-x64-v[CUDNN_VERSION].tgz
# For example:
tar -xzf cudnn-11.0-linux-x64-v8.0.5.39.tgz
# Copy extracted files into specific CUDA directory:
sudo cp -v cud*/include/cudnn*.h /usr/local/cuda-${CUDA_VERSION}/include
sudo cp -v cud*/lib*/libcudnn* /usr/local/cuda-${CUDA_VERSION}/lib64
# Add read permissions to extracted files:
sudo chmod a+r /usr/local/cuda-${CUDA_VERSION}/include/cudnn*.h /usr/local/cuda-${CUDA_VERSION}/lib64/libcudnn*
# Remove downloaded files:
rm -rf cud*
# Check installed cuDNN version:
cat /usr/local/cuda-${CUDA_VERSION}/include/cudnn.h | grep CUDNN_MAJOR -A 2
# Or:
cat /usr/local/cuda-${CUDA_VERSION}/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
# cuDNN installation complete!
[OPTIONAL] Install TensorRT
Download TensorRT
- IMPORTANT! Download and use the .TAR.GZ file! You can install TensorRT into a custom directory, which means you can control which version of TensorRT you want to use and where to install it.
- IMPORTANT! Don't download and use .DEB file! You can't control TensorRT libraries.
- Download the cuDNN .TAR.GZ file from this link: https://developer.nvidia.com/nvidia-tensorrt-download
Install TensorRT .tar.gz package files
# Change directory to TensorRT-***.tar.gz file downloaded directory. For example:
cd ~/Downloads
# Extract TensorRT .tar.gz package file:
tar -xzf TensorRT-[TENSORRT_VERSION].[OS_DISTRO].x86_64-gnu.cuda-[CUDA_VERSION].cudnn[CUDNN_VERSION].tar.gz
# For example:
tar -xzf TensorRT-7.2.0.14.Ubuntu-18.04.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz
# Create TensorRT base directory:
sudo mkdir -vp /opt/tensorrt
# Copy extracted files into TensorRT directory:
sudo mv -vf TensorRT-[TENSORRT_VERSION] /opt/tensorrt/TensorRT-[TENSORRT_VERSION]
# For example:
sudo mv -vf TensorRT-7.2.0.14 /opt/tensorrt/TensorRT-7.2.0.14
# Remove downloaded file:
rm -vrf TensorRT-[TENSORRT_VERSION].[OS_DISTRO].x86_64-gnu.cuda-[CUDA_VERSION].cudnn[CUDNN_VERSION].tar.gz
# For example:
rm -vrf TensorRT-7.2.0.14.Ubuntu-18.04.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz
Edit the ~/.bashrc
file:
# Add TensorRT environment variables into current user .bashrc file:
# (It loads environment variables, whenever current user opens a new bash session/new terminal)
nano ~/.bashrc
and add the following lines into the ~/.bashrc
file (don't forget to change [TENSORRT_VERSION] into the installed version):
## TensorRT ##
# Change to your installed TensorRT version:
# export TENSORRT_VERSION=[TENSORRT_VERSION]
export TENSORRT_VERSION=7.2.0.14
export TENSORRT_PATH="/opt/tensorrt/TensorRT-${TENSORRT_VERSION}"
export PATH="${TENSORRT_VERSION}/bin:${PATH}"
export LD_LIBRARY_PATH="${TENSORRT_PATH}/lib:${LD_LIBRARY_PATH}"
save changes and exit from the file editor.
# Load .bashrc file to init environment variables into current bash session:
source ~/.bashrc
# (Only for Python) Install TensorRT python packages:
cd ${TENSORRT_PATH}/python
pip install tensorrt-[TENSORRT_VERSION]-cp[PYTHON_VERSION]-none-linux_x86_64.whl
# For example:
pip install tensorrt-7.2.0.14-cp38-none-linux_x86_64.whl
cd ${TENSORRT_PATH}/uff
pip install uff-*-py2.py3-none-any.whl
cd ${TENSORRT_PATH}/graphsurgeon
pip install graphsurgeon-*-py2.py3-none-any.whl
cd ${TENSORRT_PATH}/onnx_graphsurgeon
pip install onnx_graphsurgeon-*-py2.py3-none-any.whl
# TensorRT installation complete!
Test CUDA
# Install sample source codes to test CUDA:
cuda-install-samples-[CUDA_VERSION].sh ~
# For example:
cuda-install-samples-11.0.sh ~
# Change directory to CUDA sample source codes installed directory:
cd ~/NVIDIA_CUDA-[CUDA_VERSION]_Samples
# For example:
cd ~/NVIDIA_CUDA-11.0_Samples
# Build sample source codes:
make clean && make -j8
# Change directory to built binary directory:
cd bin/x86_64/linux/release
# Run CUDA test binaries:
./deviceQuery
./bandwidthTest
cd ~
# Remove sample source codes:
rm -rf ~/NVIDIA_CUDA-[CUDA_VERSION]_Samples
# For example:
rm -rf ~/NVIDIA_CUDA-11.0_Samples
👍 ✨
INSTALLATION COMPLETE
cuda Article's
30 articles in total
Coalesced Memory Access in CUDA for High-Performance Computing
read article
Accelerating Data Processing with Grid Stride Loops in CUDA
read article
Running Nvidia COSMOS on A100 80Gb
read article
Accelerating Python with Numba - Introduction to GPU Programming
read article
OpenMP Data-Sharing Clauses: Differences Explained
read article
Global vs Static in C++
read article
"Learn HPC with me" kickoff
read article
Snooping on your GPU: Using eBPF to Build Zero-instrumentation CUDA Monitoring
read article
Qt error when opening ncu-ui
read article
Cuda help
read article
Using Polars/Tensorflow with NVIDIA GPU (CUDA), on Windows using WSL2
read article
Lattice Generation using GPU computing in realtime
read article
Tensorman: TensorFlow with CUDA made easy
read article
Simplifying PyTorch Installation: Introducing Install.PyTorch
read article
Setup Nx lib and EXLA to run NX/AXON with CUDA
read article
NVIDIA GPU & CUDA
read article
Deep Learning with “AWS Graviton2 + NVIDIA Tensor T4G” for as low as free* with CUDA 12.2
read article
My Experience Running HeadJobs: Generative AI at Home
read article
Why Your AWS Deep Learning AMI is Holding You Back and How to Fix
read article
NVIDIA's $200B Overnight Gain: Trending CUDA Repos Revealed! ⚡️
read article
Trending CUDA repos of the week 📈
read article
Cheapest CUDA-Compatible Cloud GPU Options in 2023
read article
Dockerize CUDA-Accelerated Applications
read article
nVidia 525 + Cuda 11.8 + Python 3.10 + pyTorch GPU Docker image
read article
How to use GPU for Deep Learning
read article
Install NVIDIA CUDA on Linux
currently reading
Import error: cannot open shared object file:no such file or directory
read article
[BTY] Day 1: Install NVIDA Driver, CUDA, and CUDNN on Ubuntu 20.04
read article
Training ESRGAN: Seemingly impossible
read article
GPGPU-sim Day 1
read article
Featured ones: