dev-resources.site
for different kinds of informations.
LeetCode Challenge: 36.Valid Sudoku - JavaScript Solution π
Top Interview 150
In this post, we'll solve Valid Sudoku, a classic problem to validate a 9x9 Sudoku
board based on specific rules. We'll implement the solution in JavaScript with a clear and efficient approach.
π Problem Description
We are given a 9x9 Sudoku
board. The goal is to determine if the current board configuration is valid, based on the following rules:
- Each row must contain the digits 1-9 without repetition.
- Each column must contain the digits 1-9 without repetition.
- Each of the nine 3x3 sub-boxes must contain the digits 1-9 without repetition.
π‘ Notes:
- The board can have empty cells represented by
"."
, which we ignore for validation. - The board doesn't need to be solvable; we only validate the current state.
π‘ Examples
Example 1
Input 1 (Valid):
const board = [
["5", "3", ".", ".", "7", ".", ".", ".", "."],
["6", ".", ".", "1", "9", "5", ".", ".", "."],
[".", "9", "8", ".", ".", ".", ".", "6", "."],
["8", ".", ".", ".", "6", ".", ".", ".", "3"],
["4", ".", ".", "8", ".", "3", ".", ".", "1"],
["7", ".", ".", ".", "2", ".", ".", ".", "6"],
[".", "6", ".", ".", ".", ".", "2", "8", "."],
[".", ".", ".", "4", "1", "9", ".", ".", "5"],
[".", ".", ".", ".", "8", ".", ".", "7", "9"],
];
Output:
true
Example 2
Input 2 (Invalid):
const board = [
["8", "3", ".", ".", "7", ".", ".", ".", "."],
["6", ".", ".", "1", "9", "5", ".", ".", "."],
[".", "9", "8", ".", ".", ".", ".", "6", "."],
["8", ".", ".", ".", "6", ".", ".", ".", "3"],
["4", ".", ".", "8", ".", "3", ".", ".", "1"],
["7", ".", ".", ".", "2", ".", ".", ".", "6"],
[".", "6", ".", ".", ".", ".", "2", "8", "."],
[".", ".", ".", "4", "1", "9", ".", ".", "5"],
[".", ".", ".", ".", "8", ".", ".", "7", "9"],
];
Output:
false
Constraints
board.length == 9
board[i].length == 9
-
board[i][j]
is"."
or a digit ("1"
-"9"
).
π JavaScript Solution
To solve the problem, we validate:
- Rows: Check if each row contains unique numbers.
- Columns: Check if each column contains unique numbers.
- 3x3 Sub-Boxes: Divide the board into 9 sub-boxes (3x3 grids) and validate them for unique numbers.
Implementation
function isValidSudoku(board) {
const rows = Array.from({ length: 9 }, () => new Set());
const cols = Array.from({ length: 9 }, () => new Set());
const boxes = Array.from({ length: 9 }, () => new Set());
for (let r = 0; r < 9; r++) {
for (let c = 0; c < 9; c++) {
const value = board[r][c];
if (value === ".") continue;
const boxIndex = Math.floor(r / 3) * 3 + Math.floor(c / 3);
if (rows[r].has(value) || cols[c].has(value) || boxes[boxIndex].has(value)) {
return false;
}
rows[r].add(value);
cols[c].add(value);
boxes[boxIndex].add(value);
}
}
return true;
}
π How It Works
- Initialization:
We use three arrays of
Set
objects to track values in rows, columns, and 3x3 boxes.Iterate through the board:
-
For each cell (
r, c
):- If the cell is empty (
"."
), skip it. - Compute the box index:
Math.floor(r / 3) * 3 + Math.floor(c / 3)
. - Check if the value already exists in the corresponding row, column, or box.
- If it does, return
false
(invalid board). - Otherwise, add the value to the respective row, column, and box.
- If the cell is empty (
Return true
:
- If all rows, columns, and boxes are valid.
π Complexity Analysis
-
Time Complexity:
- We traverse all 81 cells of the board once, performing constant-time operations for each cell.
-
O(81) β O(1)
(constant time since the board size is fixed).
-
Space Complexity:
- We use three arrays of size 9 to store sets for rows, columns, and boxes.
-
O(9 Γ 3) β O(1)
.
π Dry Run
β¨ Pro Tips for Interviews
-
Understand the Problem Clearly:
- Clarify whether the board is guaranteed to be 9x9.
- Confirm that empty cells are represented as
"."
.
-
Explain Your Approach:
- Discuss your plan to use
rows
,cols
, andboxes
sets for tracking. - Highlight why this approach works and how it efficiently detects duplicates.
- Discuss your plan to use
-
Time and Space Complexity:
- State that the algorithm runs in O(81) β O(1) time due to fixed board size.
- Space complexity is O(27) β O(1) for the 27 sets.
-
Edge Cases:
- An empty board (all
"."
) β should returntrue
. - A nearly full but invalid board (e.g., duplicates in rows/columns/boxes) β ensure detection.
- Single-row/column boards (if the board can be non-standard).
- An empty board (all
-
Code Readability:
- Use clear variable names like
rows
,cols
,boxes
. - Avoid hardcoding; calculate the box index dynamically.
- Use clear variable names like
-
Donβt Overcomplicate:
- Stick to the validation problem. Avoid solving the Sudoku or handling invalid input unless explicitly asked.
π Learn More
Check out the full explanation and code walkthrough on my previous Dev.to post:
π Minimum Window Substring - JavaScript Solution
Whatβs your preferred method to solve this problem? Letβs discuss! π
Featured ones: